Title: Visualization
1Visualization
- Blaz Zupan
- Faculty of Computer Info Science
- University of Ljubljana, Slovenia
2Visual Data Mining
- Basic idea
- visual presentation of the data
- gain insight generate hypothesis
- draw conclusions
- directly interact with data
- Include human in the data exploration process
- use her/his flexibility
- creativity
- general knowledge
3Benefits of Visualization
- involvement of the user
- results are intuitive
- no need for understanding complex mathematical or
statistical algorithms or parameters - provision of qualitative overview of the data
- can isolate specific patterns for further
quantitative analysis - can deal with non-homogenous, noisy data
4Visual Exploration Paradigm
Overview first, zoom filter, and then details
on demand.
5Visual Exploration Paradigm
Overview first, zoom filter, and then details
on demand.
6Classification
Data Type
other (e.g. algorithms/software, ...)
from D Keim M Ward Visualization, in
Intelligent Data Analysis, M Berthold DJ Hand
(eds), Springer, 2003.
networks
text, web content
multi-dimensional
two-dimensional
one-dimensional
Standard 2D/3D Display
Standard
Projection
Geometrically Transformed Display
Filtering
Iconic Display
Link Brush
Dense Pixel Display
Distortion
Stacked Display
Zoom
Interaction Distortion Technique
Visualization Technique
7Data One-Dimensional
R Bellazzi Mining Biomedical Time Series by
Combining Structural Analysis and Temporal
Abstractions, In Proc. of AMIA 1998.
8Data Two-Dimensional
MineSets Map Visualizer.
9Data Multi-Dimensional
10Data Text
- Galaxies visualization
- Uses the night sky visualization to represent a
set of documents - One document one star
- Stars clustered together represent related
documents - Includes analytical tools to investigate groups
and time-based trends, query contents
From Inspire (TM) Software, see www.pnl.gov/infovi
z/technologies.html
11Data Text
- ThemeView (TM)
- Topics or themes of text documents shown in
relief map of a natural terrain - The height of a peek relates to the strength of
the topic
From Inspire (TM) Software, see www.pnl.gov/infovi
z/technologies.html
12Data Text
- Theme River (TM)
- Identification of time related trends and
patterns - Themes represented as colored streams
- The width of the stream relates to the collective
strength of a theme
From Inspire (TM) Software, see www.pnl.gov/infovi
z/technologies.html
13Data Networks
S. cerevisiae gene interaction network Tong et
al., Science 303, 6 Feb 2004.
E. coli metabolic network (colors denote
predominant biochemical class of
metabolites) Ravasz et al., Science 297, 30 Aug
2002.
V Batagelj, A Mrvar Pajek _at_ vlado.fmf.uni-lj.si/p
ub/networks/pajek/
14Data Tree Hierarchies
Unix home directory
Selected detail
Kleiberg et al. Botanic Visualization of Huge
Hierarchies, In InfoVis, 2001.
15Classification
Data Type
other (e.g. algorithms/software, ...)
networks
text, web content
multi-dimensional
two-dimensional
one-dimensional
Standard 2D/3D Display
Standard
Projection
Geometrically Transformed Display
Filtering
Iconic Display
Link Brush
Dense Pixel Display
Distortion
Stacked Display
Zoom
Interaction Distortion Technique
Visualization Technique
16Standard 2D/3D
- x-y (x-y-z) plots
- bar charts
- line graphs
- histograms
- maps
17Standard 2D/3D
- x-y (x-y-z) plots
- bar charts
- line graphs
- histograms
- maps
18Standard 2D/3D
- x-y (x-y-z) plots
- bar charts
- line graphs
- histograms
- maps
19Geom.-Transformed Displays
- includes several classes of visualizations
- projection pursuit, finding interesting
transformations of multi-dim data set - scatterplot matrix
- parallel coordinates
20Iconic Displays
W Horn et al. Metaphor graphics to visualize ICU
data over time, In IDAMAP 1998.
21Dense Pixel Displays
DA Keim et al. Recursive Pattern A technique
for visualizing very large amounts of data Proc.
Visualization 95, pages 279-286, 1995.
22Dense Pixel Displays
Ankerst et al. Circle Segments A technique for
visually exploring large multidimensional data
sets. In Proc. Visualization 96, Hot Topic
Session, 1996.
23Stacked Displays
- an example is dimensional stacking
- embed one coordinate system within the other
- e.g. two attributes in one system, then another
two when drilling down
J LeBlanc et al. Exploring n-dimensional
databases. In Proc. Visualization 90, pages
230-239, 1990.
24Stacked Displays
Decision table visualization from SGIs MineSet
25Stacked Displays
Mosaic display in Orange.
26Classification
Data Type
other (e.g. algorithms/software, ...)
networks
text, web content
multi-dimensional
two-dimensional
one-dimensional
Standard 2D/3D Display
Standard
Dynamic Projection
Geometrically Transformed Display
Filtering
Iconic Display
Link Brush
Dense Pixel Display
Distortion
Stacked Display
Zoom
Interaction Distortion Technique
Visualization Technique
27Interaction Techniques
- Dynamic projection
- dynamically change the projections to explore
multi-dimensional data sets - projection pursuit, which finds well-separated
clusters in scatterplot - Interactive Filtering
- browsing, can be difficult for big data sets
- querying, need to specify a subset
- Zooming
- Distortion
- e.g., fisheye view
- Brushing and linking
- requires well-integrated system for visualization
- selection from one visualization is fed into
another one, selected instances highlighted in
some way
28Distortion
GW Furnas Generalized Fisheye Views, Human
Factors in Computing Systems CHI 86 Conference
Proceedings, 16-23. 1986.
29Distortion
From M Grobelnik, P Krese, D Mladenic Project
Intelligence (http//pi.ijs.si)
30Distortion
From M Grobelnik, P Krese, D Mladenic Project
Intelligence (http//pi.ijs.si)
31Distortion
From M Grobelnik, P Krese, D Mladenic Project
Intelligence (http//pi.ijs.si)
32Brushing Linking
33Integration ofVisualization Data Mining
- Visualization techniques can be applied before
(or independently) of DM - DM can be used to find patterns (or data subsets)
that are further visualized - DM is interactive, users use visualization to
guide the pattern search - Visualization of data mining models
34Regression Tree
Regression tree visualization in SGIs MineSet.
35Classification Tree
Classification tree visualization in Orange.
36Brushing Trees Scatter Plots
37Sieve Diagram (Classification)
38Nomograms
39Intelligent Data Visualization
- Use an established visualization technique, but
search for - interesting subset of attributes
- interesting subset of data instances
- interesting projection (how to use selected
attributes in visualization) - All these to find interesting visualization
- Removes the burden for the user to find such
visualizations by hand
40Arrangement for Circle Segments
M Ankerst Visual data mining with pixel-oriented
techniques, In Proc. KDD, 2001.
41VizRank
42Conclusion
- Clarity of presentation
- Aesthetics
- Navigation Interaction
- In data with many dimensions, tools are needed to
find only interesting visualizations