Title: Bethe ansatz in String Theory
1Bethe ansatz in String Theory
- Konstantin Zarembo
- (Uppsala U.)
Integrable Models and Applications, Lyon,
13.09.2006
2(No Transcript)
3AdS/CFT correspondence
Maldacena97
Gubser,Klebanov,Polyakov98 Witten98
4Planar diagrams and strings
time
(kept finite)
t Hooft coupling String coupling constant
(goes to zero)
5Strong-weak coupling interpolation
?
0
SYM perturbation theory
String perturbation theory
1
Circular Wilson loop (exact)
Erickson,Semenoff,Zarembo00 Drukker,Gross00
Minimal area law in AdS5
6Weakly coupled SYM is reliable if
Weakly coupled string is reliable if
Can expect an overlap.
7(No Transcript)
8N4 Supersymmetric Yang-Mills Theory
Gliozzi,Scherk,Olive77
Action
Global symmetry PSU(2,24)
9Spectrum
Basis of primary operators
Spectrum ?n
Dilatation operator (mixing matrix)
10Local operators and spin chains
related by SU(2) R-symmetry subgroup
b
a
a
b
11Tree level ?L (huge degeneracy)
One loop
Minahan,Z.02
12Bethe ansatz
Bethe31
Zero momentum (trace cyclicity) condition
Anomalous dimensions
13Higher loops
Requirments of integrability and BMN
scaling uniquely define perturbative scheme to
construct dilatation operator through order
?L-1
Beisert,Kristjansen,Staudacher03
14The perturbative Hamiltonian turns out to
coincide with strong-coupling expansion of
Hubbard model at half-filling
Rej,Serban,Staudacher05
15Asymptotic Bethe ansatz
Beisert,Dippel,Staudacher04
In Hubbard model, these equations are
approximate with O(e-f(?)L) corrections at L?8
16Anti-ferromagnetic state
Rej,Serban,Staudacher05 Z.05 Feverati,Fiorovan
ti,Grinza,Rossi06 Beccaria,DelDebbio06
Weak coupling
Strong coupling
Q Is it exact at all ??
17Arbitrary operators
Bookkeeping
letters
words
sentences
Spin chain
infinite-dimensional representation of PSU(2,24)
18- Length fluctuations
- operators (states of the spin chain) of
different length mix - Hamiltonian is a part of non-abelian symmetry
group - conformal group SO(4,2)SU(2,2) is part of
PSU(2,24) - so(4,2) Mµ? - rotations
- Pµ - translations
- Kµ - special conformal
transformations - D - dilatation
Ground state tr ZZZZ breaks PSU(2,24) ?
P(SU(22)xSU(22))
Bootstrap SU(22)xSU(22) invariant S-matrix
asymptotic
Bethe ansatz spectrum of an
infinite spin chain
Beisert05
19Beisert,Staudacher05
20STRINGS
21String theory in AdS5?S5
Metsaev,Tseytlin98
constant RR 4-form flux
- Finite 2d field theory (-function0)
- Sigma-model coupling constant
- Classically integrable
Classical limit is
Bena,Polchinski,Roiban03
22AdS sigma-models as supercoset
S5 SU(4)/SO(5)
AdS5 SU(2,2)/SO(4,1)
AdS superspace
Super(AdS5xS5) PSU(2,24)/SO(5)xSO(4,1)
Z4 grading
23Coset representative g(s)
Currents j g-1dg j0 j1 j2 j3
Action
Metsaev,Tseytlin98
In flat space
Green,Schwarz84
no kinetic term for fermions!
24Degrees of freedom
Bosons 15 (dim. of SU(2,2)) 15 (dim. of
SU(4)) - 10 (dim. of SO(4,1)) -
10 (dim. of SO(5)) 10 (5 in
AdS5 5 in S5) - 2
(reparameterizations) 8
Fermions - bifundamentals
of su(2,2) x su(4) 4 x 4 x 2
32 real components
2 kappa-symmetry
2 (eqs. of motion are first order)
8
25Quantization
Berenstein,Maldacena,Nastase02 Callan,Lee,McLough
lin,Schwarz, Swanson,Wu03 Frolov,Plefka,Zamaklar
06
- fix light-cone gauge and quantize
- action is VERY complicated
- perturbation theory for the spectrum, S-matrix,
- study classical equations of motion (gauge
unfixed), then guess - quantize near classical string solutions
Callan,Lee,McLoughlin,Schwarz,Swanson,Wu03
Klose,McLoughlin,Roiban,Z.in progress
Kazakov,Marshakov,Minahan,Z.04
Beisert,Kazakov,Sakai,Z.05 Arutyunov,Frolov,Sta
udacher04 Beisert,Staudacher05
Frolov,Tseytlin03-04 Schäfer-Nameki,Zamaklar,Z.
05 Beisert,Tseytlin05 Hernandez,Lopez06
26Consistent truncation
String on S3 x R1
27Gauge condition
Equations of motion
Zero-curvature representation
equivalent
Zakharov,Mikhaikov78
28Classical string Bethe equation
Kazakov,Marshakov,Minahan,Z.04
Normalization
Momentum condition
Anomalous dimension
29Quantum string Bethe equations
Arutyunov,Frolov,Staudacher04
extra phase
Beisert,Staudacher05
30Arutyunov,Frolov,Staudacher04
Hernandez,Lopez06
- Algebraic structure is fixed by symmetries
- The Bethe equations are asymptotic they describe
infinitely long strings / spin chains and do not
capture finite-size effects.
Beisert05
Schäfer-Nameki,Zamaklar,Z.06
31Open problems
- Interpolation from weak to strong coupling in the
dressing phase - How accurate is the asymptotic BA? (Probably up
to - e-f(?)L)
- Eventually want to know closed string/periodic
chain spectrum - need to understand
finite-size effects - Algebraic structure
- Algebraic Bethe ansatz?
- Yangian symmetries?
- Baxter equation?
Teschners talk