Bethe ansatz in String Theory - PowerPoint PPT Presentation

About This Presentation
Title:

Bethe ansatz in String Theory

Description:

Bethe ansatz in String Theory. Konstantin Zarembo (Uppsala U. ... Feverati,Fiorovanti,Grinza,Rossi'06; Beccaria,DelDebbio'06. Arbitrary operators. Bookkeeping: ... – PowerPoint PPT presentation

Number of Views:63
Avg rating:3.0/5.0
Slides: 32
Provided by: konst6
Category:
Tags: ansatz | bethe | rossi | string | theory

less

Transcript and Presenter's Notes

Title: Bethe ansatz in String Theory


1
Bethe ansatz in String Theory
  • Konstantin Zarembo
  • (Uppsala U.)

Integrable Models and Applications, Lyon,
13.09.2006
2
(No Transcript)
3
AdS/CFT correspondence
Maldacena97
Gubser,Klebanov,Polyakov98 Witten98
4
Planar diagrams and strings
time
(kept finite)
t Hooft coupling String coupling constant
(goes to zero)
5
Strong-weak coupling interpolation
?
0
SYM perturbation theory
String perturbation theory
1



Circular Wilson loop (exact)
Erickson,Semenoff,Zarembo00 Drukker,Gross00
Minimal area law in AdS5
6
Weakly coupled SYM is reliable if
Weakly coupled string is reliable if
Can expect an overlap.
7
(No Transcript)
8
N4 Supersymmetric Yang-Mills Theory
Gliozzi,Scherk,Olive77
  • Field content

Action
Global symmetry PSU(2,24)
9
Spectrum
Basis of primary operators
Spectrum ?n
Dilatation operator (mixing matrix)
10
Local operators and spin chains
related by SU(2) R-symmetry subgroup
b
a
a
b
11
Tree level ?L (huge degeneracy)
One loop
Minahan,Z.02
12
Bethe ansatz
Bethe31
Zero momentum (trace cyclicity) condition
Anomalous dimensions
13
Higher loops
Requirments of integrability and BMN
scaling uniquely define perturbative scheme to
construct dilatation operator through order
?L-1
Beisert,Kristjansen,Staudacher03
14
The perturbative Hamiltonian turns out to
coincide with strong-coupling expansion of
Hubbard model at half-filling
Rej,Serban,Staudacher05
15
Asymptotic Bethe ansatz
Beisert,Dippel,Staudacher04
In Hubbard model, these equations are
approximate with O(e-f(?)L) corrections at L?8
16
Anti-ferromagnetic state
Rej,Serban,Staudacher05 Z.05 Feverati,Fiorovan
ti,Grinza,Rossi06 Beccaria,DelDebbio06
Weak coupling
Strong coupling
Q Is it exact at all ??
17
Arbitrary operators
Bookkeeping
letters
words
sentences
Spin chain
infinite-dimensional representation of PSU(2,24)
18
  • Length fluctuations
  • operators (states of the spin chain) of
    different length mix
  • Hamiltonian is a part of non-abelian symmetry
    group
  • conformal group SO(4,2)SU(2,2) is part of
    PSU(2,24)
  • so(4,2) Mµ? - rotations
  • Pµ - translations
  • Kµ - special conformal
    transformations
  • D - dilatation

Ground state tr ZZZZ breaks PSU(2,24) ?
P(SU(22)xSU(22))
Bootstrap SU(22)xSU(22) invariant S-matrix

asymptotic
Bethe ansatz spectrum of an
infinite spin chain
Beisert05
19
Beisert,Staudacher05
20
STRINGS
21
String theory in AdS5?S5
Metsaev,Tseytlin98
constant RR 4-form flux
  • Finite 2d field theory (-function0)
  • Sigma-model coupling constant
  • Classically integrable

Classical limit is
Bena,Polchinski,Roiban03
22
AdS sigma-models as supercoset
S5 SU(4)/SO(5)
AdS5 SU(2,2)/SO(4,1)
AdS superspace
Super(AdS5xS5) PSU(2,24)/SO(5)xSO(4,1)
Z4 grading
23
Coset representative g(s)
Currents j g-1dg j0 j1 j2 j3
Action
Metsaev,Tseytlin98
In flat space
Green,Schwarz84
no kinetic term for fermions!
24
Degrees of freedom
Bosons 15 (dim. of SU(2,2)) 15 (dim. of
SU(4)) - 10 (dim. of SO(4,1)) -
10 (dim. of SO(5)) 10 (5 in
AdS5 5 in S5) - 2
(reparameterizations) 8
Fermions - bifundamentals
of su(2,2) x su(4) 4 x 4 x 2
32 real components
2 kappa-symmetry
2 (eqs. of motion are first order)
8
25
Quantization
Berenstein,Maldacena,Nastase02 Callan,Lee,McLough
lin,Schwarz, Swanson,Wu03 Frolov,Plefka,Zamaklar
06
  • fix light-cone gauge and quantize
  • action is VERY complicated
  • perturbation theory for the spectrum, S-matrix,
  • study classical equations of motion (gauge
    unfixed), then guess
  • quantize near classical string solutions

Callan,Lee,McLoughlin,Schwarz,Swanson,Wu03
Klose,McLoughlin,Roiban,Z.in progress
Kazakov,Marshakov,Minahan,Z.04
Beisert,Kazakov,Sakai,Z.05 Arutyunov,Frolov,Sta
udacher04 Beisert,Staudacher05
Frolov,Tseytlin03-04 Schäfer-Nameki,Zamaklar,Z.
05 Beisert,Tseytlin05 Hernandez,Lopez06
26
Consistent truncation
String on S3 x R1
27
Gauge condition
Equations of motion
Zero-curvature representation
equivalent
Zakharov,Mikhaikov78
28
Classical string Bethe equation
Kazakov,Marshakov,Minahan,Z.04
Normalization
Momentum condition
Anomalous dimension
29
Quantum string Bethe equations
Arutyunov,Frolov,Staudacher04
extra phase
Beisert,Staudacher05
30
Arutyunov,Frolov,Staudacher04
Hernandez,Lopez06
  • Algebraic structure is fixed by symmetries
  • The Bethe equations are asymptotic they describe
    infinitely long strings / spin chains and do not
    capture finite-size effects.

Beisert05
Schäfer-Nameki,Zamaklar,Z.06
31
Open problems
  • Interpolation from weak to strong coupling in the
    dressing phase
  • How accurate is the asymptotic BA? (Probably up
    to
  • e-f(?)L)
  • Eventually want to know closed string/periodic
    chain spectrum
  • need to understand
    finite-size effects
  • Algebraic structure
  • Algebraic Bethe ansatz?
  • Yangian symmetries?
  • Baxter equation?

Teschners talk
Write a Comment
User Comments (0)
About PowerShow.com