Title: Logistic Regression
1Logistic Regression
- Example
- Dependent variable - Binary variable
- ASSESSMENT (Pass/Fail)
- Independent variables (Covariates)
- AGE
- SOCIAL-ADJUSTMENT
- Data fileThree variables 1) assessment
(outcome 0fail, 1pass) 2) adjust - social
adjustment score - 3) age - age of subject
- On-line reading Chao-Ying and Tak-Shing (2002)
-
2Logistic
Linear regression OUTCOME AGE
ADJUST Logistic transformation (logit) logit
log(probpass/probfail) logit
log(odds) Logistic regression (logit
analysis) log(odds) b0 b1AGE
b2ADJUST odds eb0 b1AGE b2ADJUST
3Logistic Models
logit ß0 MODEL0 logit ß0
ß1age MODEL1 logit ß0 ß1age
ß2adjust MODEL2 GOODNESS OF FIT -2
LL improvement MODEL0 61.105
MODEL1 47.389 13.72 (1df) MODEL2 25.265 22.1
2 (1df)
4Beta coefficients
Beta coefficients Variable B Wald df Sig AGE
-0.2349 2.9538 1 0.0857 ADJUST 0.5521 11.7930
1 0.0006 Constant 1.9612 0.0578 1 0.8099
5Probability Estimates
odds probpass/probfail probfail 1 -
probpass odds probpass/(1-probsuccess) odd
s eb0 b1age b2adjust probpass 1 /
(1e-b0 b1age b2adjust) Odds and
probability re. assessment experiment odds
e1.9612-(0.2349AGE)(0.5521ADJUST) prob(pass)1/(
1 e-1.9612-(0.2349AGE)(0.5521ADJUST))
6Categorical Explanatory Variablese.g Female 0,
Male 1
log(odds) b0 b1AGE b2ADJUST b3Female
b4Male SPSS internal re-coding of data (dummy
variables) Female 0 or 1 Male 0 1 (
Not necessary with binary categorical variables)