Probabilistic CEGAR* Bj - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Probabilistic CEGAR* Bj

Description:

Predicates: partition the state space. are boolean expressions ... Similar to Blast, SLAM, Magic ... See our [Qest'07] paper. Abstraction guarantees upper bound ... – PowerPoint PPT presentation

Number of Views:18
Avg rating:3.0/5.0
Slides: 28
Provided by: Boj1
Category:

less

Transcript and Presenter's Notes

Title: Probabilistic CEGAR* Bj


1
Probabilistic CEGARBjörn Wachter
To appear in CAV
  • Joint work with Holger Hermanns, Lijun Zhang

Supported by
Uni Saar
AVACS
TexPoint fonts used in EMF. Read the TexPoint
manual before you delete this box. AAAAAAAAAA
2
Introducing
  • Probabilistic Model Checking
  • CEGAR (counterexample-guided abstraction
    refinement)
  • PASS does CEGAR for probabilistic models

1
3
PRISM PASS
  • PRISM
  • Very popular probabilistic model checker
  • Finite-state
  • PASS
  • Supports PRISM models
  • handles infinite-state as well
  • Under the Hood
  • Predicate abstraction
  • SMT
  • Interpolation

4
Comparison to PRISM
  • Network protocols
  • Wireless LAN, CSMA
  • Bounded Retransmission
  • Sliding Window

PRISM vs PASS
Model () State reduction Speed-up
WLAN (3) WLAN (1) 16x-152x ? 1,3x-7x TO-gt311s
CSMA (4) 41x-248x 1x-2x
BRP (3) 1x 1/2x - 1/3x
5
Overview
  • Basics
  • Paths, Markov Chains, MDPs
  • Counterexamples
  • Probabilistic Programs
  • Predicate Abstraction
  • Abstraction Refinement
  • Abstract Counterexamples
  • Path Analysis
  • Strongest Evidence
  • CEGAR algorithm
  • Experimental Results
  • Conclusion

Probabilistic Reachability Problem
Program
e
6
Paths, MCs, MDPs
  • Weighted
  • Path
  • Markov
  • Chain
  • non-determinism

1/3
2/3
1/3
1/3
2/3
1/3
1/3
1/3
7
Paths, MCs, MDPs
  • Weighted
  • Path
  • Markov
  • Chain
  • Markov
  • Decision
  • Process

1/3
2/3
1/3
1/3
2/3
1/3
1/3
1/3
8
Adversary
  • Adversary resolves transition non-determinism

1/3
2/3
1/3
1/3
1/3
9
Probabilistic Reachability
  • Probability to get from green to red
  • Weighted
  • Path
  • Markov
  • Chain
  • Markov
  • Decision
  • Process

1/3
2/3
1/3
1/3
2/3
1/3
1/3
1/3
1/3
1
2/3
1/3
1/3
1/3
1/2
1/2
10
Probabilistic Programs
  • Guarded command language à la PRISM
  • Variables integer, real, bool
  • Non-determinism interleaving
  • Example
  • Program (variables, commands, initial condition)

x1
Labels for CEX Analysis
11
Predicate Abstraction
  • Predicates partition the state space
  • are boolean expressions
  • xgt0, xlty, x y 3 (variables x,y)
  • ? Abstract MDP
  • Probabilistic may-transitions
  • Similar to Blast, SLAM, Magic
  • See our Qest07 paper
  • Abstraction guarantees upper bound

Probability
1
Abstract MDP
actual
0
12
May Transitions
  • Hier ists noch nicht verständlich genug!
  • Besseres Beispiel wo abs. trans lt conc. trans

abstract
concrete
13
CEGAR Loop
abstract
check
Probability
p
?
CEX
refine
Low enough
Real CEX
14
Counterexamples (CEX)
  • Resolution of non-determinism
  • initial state
  • adversary
  • induces a Markov chain
  • Counterexample
  • Resolution of non-det
  • such that probability threshold exceeded
  • Example
  • CEX for

Witness of Reachability probability in MDP
1/3
2/3
1/3
1/3
1/3
15
Counterexample Analysis Idea
  • Idea
  • Enumerate paths of Markov chain
  • Sort paths by probability Han\Katoen2007
  • visit paths with highest measure first
  • Realizable Spurious

Path 1
Path 2
Path 3
Path 4

Path 1
Path 2
Path 3
Path 4

Probability of Abstract CEX / Markov Chain
How much MEASURE is REALIZABLE? More than p?
16
Path Analysis
Logic (SMT)
  • Abstract path Two cases
  • Realizable if theres a corresponding concrete
    path
  • Spurious no corresponding path
  • Splitter predicate exists iff path spurious
  • Interpolation predicate from unsatisfiable path
    formula

Path formula
SAT
UNSAT
u
u
u
Reachable with prefix
u
u
Can do postfix
u
17
Path Analysis
Logic (SMT)
  • Abstract path Two cases
  • Realizable if theres a corresponding concrete
    path
  • Spurious no corresponding path
  • Splitter predicate (interpolant)

Path formula
SAT
UNSAT
u
u
u
u
u
u
0
x1
x0
xgt1
X 10
18
Example
Probability
Upper 1.0
0.8
0.2
0
concrete
abstract
0.8
0.5
0.5
19
Example(cont) after refinement
Probability
Upper 0.4
0.4
0
Concrete
abstract
0.8
0.5
20
Example 2
Upper 1.0
0.8
0.2
0
concrete
abstract
1.0
0.8
21
Example 2
Probability
  • Find Maximal Combination by MAX-SMT (? paper)

Upper 1.0
0.8
0.8
0.2
0.8
0
concrete
abstract
0.2
1.0
0.8
Maximum
22
CEX AnalysisSemi decision procedure
  • Problem in general undecidable
  • Too many spurious paths ? abort counterexample
    analysis
  • Output collection of predicates
  • Enough realizable probability

Path 1
Path 2
Path 3
Path 4

Path 1
Path 2
Path 3
Path 4

gt C
Limit of spurious paths to enforce termination
Path 1
Path 2
Path 3
Path 4

Path 1
Path 2
Path 3
Path 4

Can take many paths To obtain enough
realizable probability
0
23
Related Work
  • Probabilistic Counterexamples
  • however not in the context of abstraction
  • Hermanns/Aljazzar (FORMATS05) , Han/Katoen
    (TACAS07)
  • Abstraction Refinement for Prob. Finite-state
    Models
  • CEGAR for stochastic games, Chatterjee et al
    (UAI05)
  • Not based on counterexamples
  • DArgenio (Papm-Probmiv02), Fecher al
    (SPIN06) simulation
  • Magnifying-lens, de Alfaro et al (CAV07)
    probability values

24
Conclusion Future Work
  • Abstraction refinement
  • Counterexamples Markov Chains
  • Markov Chains have cycles
  • Model Checking Infinite-state Probabilistic
    Models
  • Speed-up for huge finite-state models
  • Future Work
  • Better Lower bounds

25
References
  • Tool website
  • http//depend.cs.uni-sb.de/pass
  • Literature
  • Our work
  • Hermanns, Wachter, Zhang Probabilistic CEGAR
    (CAV08)
  • Wachter, Zhang, Hermanns MC Modulo Theories
    (Qest07)
  • Counterexamples
  • Hermanns, Aljazar CEX for timed prob
    reachability, FORMATS05
  • Han, Katoen CEX in probabilistic model checking,
    TACAS07
  • Probabilistic Abstraction Refinement
  • De Alfaro, Magnifying-lens abstraction for MDPs,
    CAV07
  • Chatterjee, Henzinger, Majumdar CEX-guided
    planning, UAI05

26
Questions?
27
  • Is Counterexample analysis problem undecidable?
  • Semi-decision algorithm ? heuristics
  • If we only need finiteley many paths
  • ? decidable if logic is
  • If we need infinitely many
  • ? undecidable
Write a Comment
User Comments (0)
About PowerShow.com