Title: One scenario for the CBM Trigger Architecture
1One scenario forthe CBM Trigger Architecture
- Ivan Kisel
- Kirchhoff-Institut für Physik, Uni-Heidelberg
KIP
FutureDAQ Workshop, München March 25-26, 2004
2Particle Multiplicities and Data Rates
nchar nneut
980 1080
680 700
1000 700
for AuAu 25 A GeV UrQMD
Multiplicities for central collision
not including background link overhead
Data rate for 107 int / sec
STS 60
Sub-System GByte/sec
Total 350
RICH 90
TRD 130
RPC 10
ECAL 50
W.Müller
3DAQ-Trigger Scenario
From LoI
Hit Level Processing
Bandwidth 1 TByte/sec
Local Level Processing
Buffering Event association Regional Level
Pre-Processing
3-10 MHz Event Rate
First Level Trigger FGPA DSP PC
300 kHz Event Rate
Second Level Trigger PC Farm
20 kHz Event Rate 1 GByte/sec Bandwidth
W.Müller
4Modular Structure of DAQ
Detector
MAPS, STS
RICH
ECAL
TRD
50 kB/ev
107 ev/s
SFn
Dt
MAPS
STS
RICH
TRD
ECAL
SFn
Dt
SFn
Dt
SFn
Dt
SFn
Dt
100 ev/slice
Time-Slice Builder Network
N x M
Scheduler
SFn
Dt
MAPS
STS
RICH
TRD
ECAL
SFn
available
Trigger/Offline PC Farm
5 MB/slice
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Farm Control System
105 sl/s
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
Sub-Farm
5Scheduled Data Transfer
New Event Entry
- Idle.
- Obtain Destination.
- Produce a Tag.
The Scheduler assigns Time-Slices to Sub-Farms.
Deyan Atanasov, Scheduled Data Transfer, CBM DAQ,
HD 18.03.04
6FCS - Farm Control System
- Cluster Interface Agent (CIA)
- every node can be (re)configured, turned on/off
remotely via Ethernet - it can save hardware components like display
cards, Floppy Disk Drives - monitor the whole cluster, every host regardless
of its current state with additional monitoring
possibilities independent from operating system
Control
FCS Network
Monitor
Host
PCI bus
- The farm implements its own control network
- Control over every node is done via a redundant
hardware unit attached to the node - The interface between FCS and ECS is done via a
dedicated node
Experiment Control System
Farm Control System
Ralf Panse, Farm Control System, CBM DAQ, HD
18.03.04
7Distributed Local Mass Storage
1 MB/sec/PC
10 TB/PC 10 000 000 MB/PC 10 000 000 sec
120 days 4 months of data taking
Data Taking 3 Months
Data Analysis 9 Months
Data Reduction 10001
Data Reduction 1001
Arne Wiebalck, ClusterRAID, CBM DAQ, HD 18.03.04
Lord Hess, ClusterRAID1 Prototype, CBM DAQ, HD
18.03.04
8PC Sub-Farm
Scheduler
Input Data
Farm Control System
Sub-Farm
Sub-Farm
Sub-Farm
-Farm
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
- Various CPU power
- Shared PCs
- Reconfigurable
- Fault tolerant
- Offline on background
9FPGA Pre-process/L1
Network
In
Free/Busy Offline
Memory Buffers
500 MB/s/FPGA
STS
RICH
TRD
ECAL
Local time slice 1
NIC
Local time slice 2
Local time slice 3
MAPS
Local time slice
Local time slice 99
Local time slice 100
STS
RICH
TRD
ECAL
Local time slice i
LM/DSP
LM/DSP
LM/DSP
LM/DSP
500 MB/s/FPGA
Out
MAPS
Local time slice i1
LM/DSP
LM/DSP
LM/DSP
LM/DSP
FPGA Pre-process/L1
PCs
10000 ev/s
100 ms/ev
10CPU L2/Offline
FPGAs
In
Free/Busy Offline
Memory Buffers
500 MB/s/CPU
STS
RICH
TRD
ECAL
Updated local time slice 1
NIC
Updated local time slice 2
Updated local time slice 3
MAPS
Updated local time slice
Updated local time slice 99
Updated local time slice 100
CPU L2/Offline
1 MB/s/CPU
300 ev/s
3 ms/ev
Storage
11FPGA 4D Pre-processor/L1 Trigger
Reconstruct primary vertex Select detached
secondary D tracks Select RoIs of secondary J/y
tracks Fit secondary tracks Fit secondary
vertices Pre-process/Trigger
STS
STS
ECAL
TRD
RICH
STS
STS
STS
12CPU 4D L2 Trigger
Improve (m)any of the L1 results
Reconstruct primary vertex Select detached
secondary D tracks Select RoIs of secondary J/y
tracks Fit secondary tracks Fit secondary
vertices Trigger
STS
STS
ECAL
TRD
RICH
STS
ECAL
TRD
RICH
STS
STS
13Offline Analysis
Improve (m)any of the L2 results
ECAL
TRD
Reconstruct primary vertex Select detached
secondary D tracks Select RoIs of secondary J/y
tracks Fit secondary tracks Fit secondary
vertices Analysis
RICH
STS
ECAL
TRD
RICH
STS
ECAL
TRD
RICH
STS
ECAL
TRD
RICH
STS
ECAL
TRD
RICH
STS
14Algorithms
Hough Transform Cellular Automaton Elastic
Net Kalman Filter
Simple Local Parallel Fast
15Trigger Simulation
L1 FPGA C, SystemC, VHDL, Synopsys, Quartus
L2 CPU Framework, C, GEANT
Offline Framework, C, GEANT
Overall behavior SystemC, Ptolemy
16Summary
- Modular structure of DAQ
- Online reconfigurable farm
- Commercial hardware
- Modular software
- All-in-one sub-farm
- No canonical event building
- Access to all data at any stage
- 4D event reconstruction
- Flexible L1/L2/Offline definition
- No need to re-process L1 at L2
- Offline can run/test L1 and L2
- All data on local mass storage
- Online alignment
- Online database update
17Modular Structure of a PC Node
Switch
In
Free/Busy Offline
CPU L2 OFFLINE
STS
RICH
TRD
ECAL
500 MB/s
Local time slice i
LM/DSP
LM/DSP
LM/DSP
LM/DSP
MAPS
NIC
Local time slice i1
LM/DSP
LM/DSP
LM/DSP
LM/DSP
FPGA L1
bus snooping
PCI-X
1 MB/s
10000 ev/s
300 ev/s
Storage
100 ms/ev
3 ms/ev