Title: Solving Markov Random Fields using Second Order Cone Programming
1Solving Markov Random Fields using Second Order
Cone Programming
Aim To obtain accurate MAP estimate of Markov
Random Fields
Results
Solving MRFs using SOCP Relaxations
Choice of S
Subgraph Matching
- Desirable to eliminate Y (which squares
variables) by using slack variables.
Markov Random Field (MRF)
S (ei ej) (ei ej) T
S ei eiT
S (ei - ej) (ei - ej) T
1
2
1, -1 -1, 1
3
Configuration Vector y
4
G2 (V2,E2)
G1 (V1,E1)
MRF
5
7
5, 2 7, 1
Likelihood Vector l
- 1000 synthetic pairs of graphs
- 5 noise added
Prior Matrix P
MRF Example
sites S 2 labels L 2
Let A ? B ? Aij Bij
yi2 ? 1
(yi yj)2 ? tij
(yi - yj)2 ? zij
y arg min yT (4l 2P1) - ?ij Pij zij
arg min yT (4l 2P1) P ? Y, Y y yT subject
to ? y(site i) 2 - L
tij zij 4
- Bound on slack variables tij and zij
MAP y
Advantages
( A )
- No restrictions on the MRF.
Second Order Cone Programming (SOCP)
Object Recognition
- Fewer variables, faster than SDP.
- Efficient interior-point algorithms.
Outline
Second Order Cone
u ? t OR u2 ? st
Triangular Inequalities
Additional constraints for better accuracy.
Texture
min yT f subject to Ai y bi ? yT ci di
SOCP
- At least two of yi, yj and yk have the same
sign.
Yij Yjk Yik ? -1
Part likelihood
Spatial Prior
x2 y2 z2
- Constraints can be specified without using Y.
zij zjk zik ? 8
LBP
( B )
yT q Q ?Y, Y y yT
Convex Relaxations
- Random subset of inequalities used for
efficiency.
Robust Truncated Prior Model
Truncated for incompatible labels.
GBP
Semidefinite (SDP)
Lift and Project (LP)
- By changing values of prior, P can be made
sparse.
- Max-k-cut
- MAP - accurate
- Complexity - high
- TRW-S,? -expansion
- MAP - inaccurate
- Complexity - low
SOCP
Reparametrization
Y - y yT ? 0
Y ? -1,1nxn
Prior 0.5 0.5 0.3 0.3 0.5
RTPM Examples
Prior 0 0 -0.2 -0.2 0
Second Order Cone Programming (SOCP)
ROC Curves for 450 ve and 2400 -ve images
Additional Compatibility Constraints
P(yi,yj) lt 0
- More efficient and less accurate than SDP.
- Labels for sites i and j should be compatible
?ij P(yi,yj) zij gt 0
- S is a set of semidefinite matrices. S U UT ?
S
( C )
- Choice of S is crucial for accuracy and
efficiency.
Y ? S - UT y2 ? 0
Code available at http//cms.brookes.ac.uk/staff/P
awanMudigonda/MRFSOCP.zip