Title: Quantitative Methods
1Quantitative Methods
- Using more thanone explanatory variable
2Using more than one explanatory variable
Why use more than one?
- Intervening or 3rd variables (schoolchildrens
maths) - Reducing error variation (saplings)
- There is more than one interesting predictor
(trees)
3Using more than one explanatory variable
Statistical elimination
4Using more than one explanatory variable
Statistical elimination
5Using more than one explanatory variable
Statistical elimination
6Using more than one explanatory variable
Statistical elimination
7Using more than one explanatory variable
Statistical elimination
8Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
9Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
10Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
11Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
12Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
13Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
14Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
15Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
MTB gt glm lvollhgt SUBCgt covar lhgt. Source
DF Seq SS Adj SS Adj MS F
P LHGT 1 3.5042 3.5042 3.5042
21.14 0.000 Error 29 4.8080 4.8080
0.1658 Total 30 8.3122 MTB gt glm
lvollhgtldiam SUBCgt covar lhgt ldiam. Source
DF Seq SS Adj SS Adj MS F
P LHGT 1 3.5042 0.1987
0.1987 30.14 0.000 LDIAM 1 4.6234
4.6234 4.6234 701.33 0.000 Error 28
0.1846 0.1846 0.0066 Total 30
8.3122
16Using more than one explanatory variable
Models and parameters
17Using more than one explanatory variable
Models and parameters
Y ? ?
Unknown quantities we would like to know, in
Greek Known quantities that are estimates of
them, in Latin
18Using more than one explanatory variable
Models and parameters
Y ? ?
19Using more than one explanatory variable
Models and parameters
MTB gt glm lvolldiamlhgt SUBCgt covar ldiam
lhgt. Analysis of Variance for LVOL, using
Adjusted SS for Tests Source DF Seq SS
Adj SS Adj MS F P LDIAM 1
7.9289 4.6234 4.6234 701.33
0.000 LHGT 1 0.1987 0.1987
0.1987 30.14 0.000 Error 28 0.1846
0.1846 0.0066 Total 30 8.3122
Term Coef SE Coef T
P Constant -6.6467 0.7983 -8.33
0.000 LDIAM 1.98306 0.07488 26.48
0.000 LHGT 1.1203 0.2041 5.49
0.000
20Using more than one explanatory variable
Models and parameters
MTB gt glm lvolldiam SUBCgt covariate
ldiam. Analysis of Variance for LVOL Source
DF Seq SS Adj SS Adj MS F P LDIAM
1 7.9254 7.9254 7.9254 599.72 0.000 Error 29
0.3832 0.3832 0.0132 Total 30 8.3087
21Using more than one explanatory variable
Models and parameters
MTB gt glm lvolldiam SUBCgt covariate
ldiam. Analysis of Variance for LVOL Source
DF Seq SS Adj SS Adj MS F P LDIAM
1 7.9254 7.9254 7.9254 599.72 0.000 Error 29
0.3832 0.3832 0.0132 Total 30 8.3087
22Using more than one explanatory variable
Models and parameters
Source DF Seq SS Adj SS Adj MS F
P LDIAM 1 7.9254 7.9254 7.9254 599.72
0.000 Error 29 0.3832 0.3832
0.0132 Total 30 8.3087
Source DF Seq SS Adj SS Adj MS F
P LDIAM 1 7.9254 4.6275 4.6275 698.63
0.000 LHEIGHT 1 0.1978 0.1978 0.1978
29.86 0.000 Error 28 0.1855 0.1855
0.0066 Total 30 8.3087
23Using more than one explanatory variable
Geometry in 3-D
24Using more than one explanatory variable
Geometry in 3-D
Source DF Seq SS Adj SS Adj MS
F P LHGT 1 3.5042 0.1987
0.1987 30.14 0.000 LDIAM 1 4.6234
4.6234 4.6234 701.33 0.000 Error 28
0.1846 0.1846 0.0066 Total 30
8.3122 Source DF Seq SS Adj SS
Adj MS F P LDIAM 1 7.9289
4.6234 4.6234 701.33 0.000 LHGT 1
0.1987 0.1987 0.1987 30.14
0.000 Error 28 0.1846 0.1846
0.0066 Total 30 8.3122
25Using more than one explanatory variable
Geometry in 3-D
26Using more than one explanatory variable
Geometry in 1-D
27Using more than one explanatory variable
Last words
- Two or more x-variables are often useful and
often necessary, and are easy to fit - Statistical elimination, Seq and Adj SS, plug-in
parts - Two variables may duplicate each others
information (right and left legs)... - ... or they may unmask it (poets dates)
Next week Designing experiments Read Chapter 5