Title: Physics 1710 Chapter 21 Kinetic Theory of Gases
1Physics 1710Chapter 21 Kinetic Theory of Gases
- Quiz
- A person emits approximately
- 100 W of heat. Show that this requires a diet of
approximately 2000 Cal per day.
2Physics 1710Chapter 21 Kinetic theory of Gases
- 1' Lesson
- The Ideal Gas Law results from the cumulative
action of atoms or molecules. - The average kinetic energy of the atoms or
molecules of an ideal gas is equal to 3/2 kT. - Energy average distributes equally (is
equipartitioned) into all available states. - The distribution of particles among available
energy states obeys the Boltzmann distribution
law. - nV no e E/kT
3Physics 1710Chapter 21 Kinetic Theory of Gases
- Molecular Model of Ideal Gas
- Key concept gas is ensemble of non-interacting
atoms or molecules. - Pressure due to a single molecule
- at wall of vessel
- P1 -F1 /A -(?px / ?t)/A
- Impulse
- ?px - mvx (mvx ) -2 mvx
- ?t 2d /vx
- Thus
- P1 - F1 /A mvx2 /(d?A)
4Physics 1710Chapter 21 Kinetic Theory of Gases
- P1 - F1 /A mvx2 /(d?A)
- Total Pressure
- P NltP1 gt Nmltvx2 gt/(d?A)
- P (N/V) mltvx2 gt
- Average vx2 ltvx2 gt
- ltv2 gtltvx2 gt ltvy2 gt ltvz2 gt
- ltv2 gt3ltvx2 gt ltvx2 gt 1/3 ltv 2gt
- P ?(N/V)(½ mltv 2gt)
5Physics 1710Chapter 21 Kinetic Theory of Gases
- P ?(N/V)(½ mltv2 gt)
- But
- P (N/V) kT
- Thus
- T 2/(3k)(½ mltv 2gt)
- ½ mltv2gt 3/2 kT
- ½ mltvx2gt 1/3 ½ mltv2gt ½ kT
6Physics 1710Chapter 21 Kinetic Theory of Gases
- Principle of Equipartition of Energy
- Each degree of freedom contributes 1/2 kT to the
energy of a system.
7Physics 1710Chapter 21 Kinetic Theory of Gases
- Each molecule in a gas contributes 3 degrees of
freedom to the system - N( 1/2 mltv 2gt) 3N(½ kT) 3/2 nRT
- vltv 2gt vrms v(3 kT/m) v(3RT/M)
8Physics 1710Chapter 21 Kinetic Theory of Gases
- (Molar) Specific Heat of an Ideal Gas
- ?Q n CV ?T (constant volume)
- ?Q n CP ?T (constant pressure)
- W ? P dV at constant volume W 0.
- ?Eint ?Q n CV ?T
- Eint n CV T
- CV (1/n) d Eint /dT
- CV 3/2 R 3/2 No kT 12.5 J/mol?K
9Physics 1710Chapter 21 Kinetic Theory of Gases
- ?Eint ?Q W nCP ?T - P?V
- nCV ?T nCP ?T n R ?T
- CP - CV R
- CP 5/2 R
- ? CP / CV (5/2 R)/(3/2 R) 5/3
- ? 5/3
10Physics 1710Chapter 21 Kinetic Theory of Gases
- Adiabatic Expansion of an Ideal Gas
- For adiabatic case
- dEint n CV dT - PdV
- So that
- dT -P dV /(nCV )
- Also
- PV nRT
- PdV VdP nR dT
- PdV VdP -RP /(nCV ) dV
11Physics 1710dChapter 21 Kinetic Theory of Gases
- PdV VdP -R/(nCV ) PdV
- Rearranging
- dP/P 1 R/(nCV) dV/V
- dP/P - ? dV/V
- ln P - ? lnV ln K
- PV ? constant
12Physics 1710Chapter 21 Kinetic Theory of Gases
- Bulk Modulus of an Ideal Gas
- B -?P/ (?V/V)
- P K V - ?
- dP - ? KV - ? - 1dV
- B -dP/(dV/V)
- B (? KV 1dV)/(dV/V)
- B ? KV - ?
- B ? P
13Physics 1710Chapter 21 Kinetic Theory of Gases
- Law of Atmospheres
- dP -mg nV dy
- P nV kT
- dP kT dnV
- kT dnV -mg nV dy
- dnV/ nV -(mg/kT) dy
-
- nV no e (mgy/kT)
14Physics 1710Chapter 21 Kinetic Theory of Gases
- Boltzmann Distribution Function
- nV no e (mgy/kT)
- nV no e U/kT
- nV (E) no e E/kT
15Physics 1710Chapter 21 Kinetic theory of Gases
- Summary
- The Ideal Gas Law results from the cumulative
action of atoms or molecules. - The average kinetic energy of the atoms or
molecules of an ideal gas is equal to 3/2 kT. - ½ mltv2gt 3/2 kT
- Energy average distributes equally (is
equipartitioned) into all available states. - Each degree of freedom contributes 1/2 kT to the
energy of a system.
16Physics 1710Chapter 21 Kinetic Theory of Gases
- Summary (contd.)
- ? CP / CV
- PV ? constant
- B ? P
- The distribution of particles among available
energy states obeys the Boltzmann distribution
law. - nV no e E/kT