Title: Chap 7:Derivative-Free Optimization
1Chap 7Derivative-Free Optimization
Genetic Algorithms
2Genetic Algorithms
- Motivation
- Look at what evolution brings us?
- Vision
- Hearing
- Smelling
- Taste
- Touch
- Learning and reasoning
- Can we emulate the evolutionary process with
today's fast computers?
3Genetic Algorithms
- Terminology
- Fitness function
- Polulation
- Encoding schemes
- Selection
- Crossover
- Mutation
- Elitism
4Genetic Algorithms
Chromosome
(11, 6, 9) 1011 0110 1001
Gene
Crossover
1 0 0 1 1 1 1 0
1 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 1 1 1 0
Crossover point
Mutation
1 0 0 1 1 1 1 0
1 0 0 1 1 0 1 0
Mutation bit
5Genetic Algorithms
10010110 01100010 10100100 10011001 01111101 . .
. . . . . . . . . .
10010110 01100010 10100100 10011101 01111001 . .
. . . . . . . . . .
Elitism
Selection
Crossover
Mutation
Current generation
Next generation
6Genetic Algorithms
- Example Find the max. of the peaks function
- z f(x, y) 3(1-x)2exp(-(x2) - (y1)2) -
10(x/5 - x3 - y5)exp(-x2-y2)
-1/3exp(-(x1)2 - y2).
7Genetic Algorithms
- Derivatives of the peaks function
- dz/dx -6(1-x)exp(-x2-(y1)2) -
6(1-x)2xexp(-x2-(y1)2) -
10(1/5-3x2)exp(-x2-y2) 20(1/5x-x3-y5)
xexp(-x2-y2) - 1/3(-2x-2)exp(-(x1)2-y2) - dz/dy 3(1-x)2(-2y-2)exp(-x2-(y1)2)
50y4exp(-x2-y2) 20(1/5x-x3-y5)yexp(-x
2-y2) 2/3yexp(-(x1)2-y2) - d(dz/dx)/dx 36xexp(-x2-(y1)2) -
18x2exp(-x2-(y1)2) - 24x3exp(-x2-(y1)2
) 12x4exp(-x2-(y1)2) 72xexp(-x2-y2)
- 148x3exp(-x2-y2) - 20y5exp(-x2-y2)
40x5exp(-x2-y2) 40x2exp(-x2-y2)y5
-2/3exp(-(x1)2-y2) - 4/3exp(-(x1)2-y2)x2
-8/3exp(-(x1)2-y2)x - d(dz/dy)/dy -6(1-x)2exp(-x2-(y1)2)
3(1-x)2(-2y-2)2exp(-x2-(y1)2)
200y3exp(-x2-y2)-200y5exp(-x2-y2)
20(1/5x-x3-y5)exp(-x2-y2) -
40(1/5x-x3-y5)y2exp(-x2-y2)
2/3exp(-(x1)2-y2)-4/3y2exp(-(x1)2-y2)
8Genetic Algorithms
Initial population
5th generation
10th generation
9Genetic Algorithms
10Simulated Annealing
11Simulated Annealing
- Terminology
- Objective function E(x) function to be
optiimized - Move set set of next points to explore
- Generating function to select next point
- Acceptance function h(DE, T) to determine if the
selected point should be accept or not. Usually
h(DE, T) 1/(1exp(DE/(cT)). - Annealing (cooling) schedule schedule for
reducing the temperature T
12Simulated Annealing
Select a new point xnew in the move sets via
generating function
Compute the obj. function E(xnew)
Set x to xnew with prob. determined by h(DE, T)
Reduce temperature T
13Simulated Annealing
- Example Travel Salesperson Problem (TSP)
How to transverse n cities once and only once
with a minimal total distance?
14Simulated Annealing
12
12
10
10
3
3
Translation
1
1
Inversion
6
6
7
7
2
2
9
11
9
11
8
8
4
5
4
5
1-2-3-4-5-6-7-8-9-10-11-12
1-2-3-4-5-9-8-7-6-10-11-12
12
12
10
10
3
3
Switching
1
1
6
6
7
7
2
2
9
11
9
11
8
8
4
5
4
5
1-2-11-4-8-7-5-9-6-10-3-12
1-2-3-4-8-7-5-9-6-10-11-12
15Simulated Annealing
Initial random path
During SA process
Final path
16Simulated Annealing
- 100-city TSP with penalities when crossing the
circle
Penalty 0
Penalty 0.5
Penalty -0.3