Title: Vincenne A07s 8Bit ADC Aug 7, 2003
1Vincenne A07s 8-Bit ADCAug 7, 2003
- Mark Burns
- Texas Instruments, Inc.
- Dallas Tx
- 972-480-3891
- mburns_at_ti.com
2Vincenne A07s 8-Bit GPADC Evolution
ACT5_LT 10-Bit ADC in A07
MIH DIE9 10-Bit ADC, A07 Servo Test Mode changed
to use voltage output, not current output to
control integrator Redesigned digital controller
to allow VHDL replacement if desired. Timing set
by delay elements to be identical in both Normal
Mode and Servo Test Mode. Reduction in area by
use of VMID holding caps as dummy caps.
Vincenne P3E 8-Bit ADC, A12 Lessons Learned Servo
Test Mode DC Offset Fix (500u x 400u)
Vincenne2 A07s Lessons Learned from P3E combined
with 8-bit version of 10-bit MIH DIE9 digital
controller, including servo test mode Herta A07
8-bit ADC analog block and 16-input GPMUX
modified to 14 inputs and split up into sections
as with Vincenne P3E Version (500u x 225u)
Herta A07 8-Bit ADC, A07 No Servo Test Mode
(analog section only) Digital controller for
Herta A07 is combined with other VHDL logic -
will reuse only the analog section for Vincenne
A07
3Review Charge Redistribution 8-Bit ADC
C 2.54 pF
VDD / 2
COMPO
Sampling Phase
390 W
VDD / 2
VDD
Vin
4Review Charge Redistribution 8-Bit ADC
C 2.54 pF
Hold Phase / MSB Comparison
VDD / 2
COMPO
VDD / 2
VDD
Vin
5Review Charge Redistribution 8-Bit ADC
C 2.54 pF
D6-D0 Comparisons (Sucessive Approximation)
VDD / 2
COMPO
VDD / 2
VDD
Vin
6Vincenne P3 8-Bit ADC
Vincenne P3 capacitor array is a 3/5 architecture
with a coupling cap
C 2.54 pF
VDD / 2
COMPO
C32/15
C/2
C/4
C
C/2
C/4
C/8
C/16
C/16
C/8
VDD / 2
VDD
Vin
7Herta A07 8-Bit ADC
Herta A07 analog section uses a 4/4 architecture
- will use this on Vincenne A07 BUT...
C 2.96 pF
VDD / 2
COMPO
C
C/2
C/4
C/16
C/2
C/4
C/8
C/16
0
C/8
VDD / 2
VDD
Vin
8Vincenne P3 uses a terminating cap of C/16, and a
non-unit coupling cap. This gives a 254-255 code
edge at VDD - 1 lsb. Herta uses no terminating
cap and a unit coupling cap, which gives 254-255
code edge at VDD. Vincenne A07 will use the
Herta scheme to avoid the non-unit coupling
capacitor (Improves DNL!!!).
C 2.96 pF
VDD / 2
COMPO
C
C/2
C/4
C/16
C/2
C/4
C/8
C/16
0
C/8
VDD / 2
VDD
Vin
Vincenne A07 8-Bit ADC
9Single Conversion Simulation
- Test Conditions
- ADCCLK 1 MHz
- AVDD DVDD 2.75 V
- 20 us conversion rate to second start signal
(checking ability of controller to start another
conversion) - GPA0 conversion
- GPA0 1.0 V, Output Code 0101 1100
- All Other Channels 0 V
- Switch Control Timing
- Input voltage is sampled for 8 clock cycles
- VMID voltage disconnected and Comparator AC
coupled 20 ns after rising ADCCLK edge (This
reduces DC offset) - 8ns later, S7 is switched
- 8ns after S7 is switched, S6-S0 are switched to
VREFN (0V) and SAR begins
10Single Conversion on GPA0, Input 1.0V
11ADC Sample Timing
12Supply Currents
- AVDD Supply Currents
- Current surges gt 2.3 mA, but the surges are less
than 1 ns wide - DC Current averages approx. 265 uA for 16 clock
cycles (16 us) - DC Current settles to near 0 uA DC remaining
clock cycles (84 us) - Average IDDA 265 uA x (16 us / 100 us) 42
uA - DVDD Supply Currents
- Main spike during sampling period, 80ns by 250 uA
- 0.2 uA average over 100us period - Total average current
- 42.2 uA (plus 5 uA bias current for a total of
47.2 uA) with continuous conversions every 100 us - Previous (P3B) design pulled 110 uA under same
conditions - Power down currents lt 8 nA
13Supply Currents (IDDD, IDDA)
14Mux Tests, Clipping Ckts, Full Scale, Xtalk
- ADCCLK 1 MHz, AVDD DVDD 2.75 V, 20 us conv.
- FS/-FS test (and MUX functionality)
- GPA0 10 mV Code 0000 0000
- GPA1 13 mV Code 0000 0001
- GPA12 2.748 V Code 1111 1110
- GPA13 2.752 V Code 1111 1111
- Residual channel/channel crosstalk
- GPA5 10 mV (via 50 KW) Code 0000 0000
- GPA6 2.748V (no series resistance) Code 1111
1110 - GPA7 10 mV (via 50 KW) Code 0000 0000
- Other Mux Functionality
- GPA2 1.2 V Code 0110 1111
- GPA3 1.3 V Code 0111 1000
- GPA4 1.4 V Code 1000 0001
- DCIO 1.8 VDC Code 1010 0110
- IMEAS 1.9 VDC Code 1011 0000
- VMEAS 2.0 VDC Code 1011 1001
- BDATA 2.7 (Checks Clipping Ckt) Code 1111 1010
15Multiple Conversions on Channels 0-7
16DAC INL and DNL Definition
- Integral non-linearity (INL) measures deviation
from best-fit line (or endpoint line or abs.
line) - Differential non-linearity (DNL) measures
consistency of step size - VERY TIME CONSUMING TEST!!!
17Linear Ramp Histogram
- Code width is proportional to number of hits at
each code (typically requires gt16 hits per code)
18Traditional Servo Technique
- External servo circuit automates the search
process to find each code edge
19Test Mode Sampling Phase One Clock Period
C 2.54 pF
VDD / 2
COMPO
390 W
VDD / 2
VDD
Servo Input
Vin
Vincenne P3E Servo Test Mode
20Test Mode Compare Phase One Clock Period Skips
SAR Process, Saving Much Test Time
C
VDD / 2
COMPO
VDD / 2
VDD
Vin
Target Value Written to SC0-SC7 Via ADCIOlt70gt
Vincenne P3E Servo Test Mode
21Servo Test Mode Vincenne P3E
22P3E Servo Test Mode INL Curve
Histogram Test Method 256 hits per code, 1.3 sec
collection time.
Servo Test Mode 30 msec collection
time. Repeatability/resolution far better.
Correlation fairly good but needs work.
23P3E Servo Test Mode DNL Curve
Histogram Test Method 256 hits per code, 1.3 sec
collection time.
Servo Test Mode 30 msec collection
time. Repeatability/resolution far better.
Histogram data too noisy to judge correlation!
Coupling cap mismatch clearly visible at 0.1 LSB.
24Vincenne A07s Eliminates Current Source and
Fast/Slow Select
100 KW
0.1 mF
DV2IDT/C DT2 us, C100 nF, I(VDD/2)/100K,
DV550 uV
25Vincenne A07s Servo Test Mode
26Servo Test Mode Timing Comparison