Parameter Finding Methods for Oscillators with a Specified Oscillation Frequency PowerPoint PPT Presentation

presentation player overlay
1 / 21
About This Presentation
Transcript and Presenter's Notes

Title: Parameter Finding Methods for Oscillators with a Specified Oscillation Frequency


1
Parameter Finding Methods for Oscillatorswith a
Specified Oscillation Frequency
Igor Vytyaz, David C. Lee, Suihua Lu, Amit
Mehrotra, Un-Ku Moon, and Kartikeya Mayaram
Part of this work was performed while I. Vytyaz
was at Berkeley Design Automation
2
Outline
  • Background and motivation
  • Periodic steady-state (PSS) analysis
  • With a Specified oscillation Frequency (PSS-SF)
  • Finite difference
  • Shooting
  • Harmonic balance
  • Conventional search-based approach
  • Examples and results

3
Background and motivation
  • Oscillator applications
  • Data converters (ADC, DAC)
  • Digital systems (memory, microprocessors)
  • Communication (CDR, SERDES, RF transceivers)
  • Oscillation frequency is a design specification
  • Conventional PSS analysis
  • Finds PSS waveforms and oscillation frequency
  • Frequency may be different than in specification
  • Alternative PSS analysis is needed
  • Tunes oscillator design and finds PSS waveforms
  • Frequency same as in specification

4
PSS analysis for voltage controlled osc
  • Phase-locked loop (PLL) design and analysis
  • Oscillation frequency is known
  • This analysis finds the control voltage for the
    circuit to oscillate at a specified frequency

fref
f0
Vctrl
VCO
LF
CP
PD
N
f0 N fref
A. Mehrotra, et al., Steady-state analysis of
voltage and current controlled oscillators,
ICCAD 2005, pp. 618-623, Nov 2005.
5
PSS with Specified Frequency (PSS-SF)
  • VCO design and analysis
  • PSS-SF handles any frequency-tuning parameter
  • MOSFET width
  • Bias current
  • Tank capacitor,

known
VCO
fixed
f0
Ctank
Ibias
W
Vctrl
6
Frequency-tuning parameter
  • Design freedom
  • Many ways to achieve a specified frequency f0
  • Unique solution
  • Choose a single frequency-tuning parameter gf0

gf0 is W
W
gf0 is W
a unique solution
Ctank
W
f0
f0target
initial design
Ctank
7
Equations for oscillators PSS
  • Circuit DAEs
  • Periodicity
  • Initial phase

T
Ctank
Ibias
W
x(t)
gf0
reactive
resistive
sources
, gf0
, gf0
gf0
Osc. Eq.
8
Conventional PSS analysis vs PSS-SF
  • Conventional PSS
  • PSS - specified frequency

Known parameter
T
x(t)
x(t), T
gf0
gf0
Osc. Eq.
9
Finite difference method for PSS-SF
  • Equations
    Unknowns
  • Eliminate using periodicity
    constraint eqn.
  • Discretize time
  • Approximate by a finite difference
    formula

, gf0
, gf0
gf0
gf0
10
Finite difference PSS-SF Jacobian
  • Newton-Raphson iteration
  • Jacobian matrix
  • Compute sensitivities of device contributions to
    gf0

gf0
gf0
gf0
11
Shooting method for PSS-SF
  • Equations
    Unknowns
  • Compute using transient analysis
  • Initial condition

, gf0
, gf0
gf0
gf0
12
Shooting PSS-SF Jacobian
  • Jacobian matrix
  • Compute using transient
    sensitivity analysis
  • Initial condition

gf0
gf0
gf0
13
Harmonic balance method for PSS-SF
  • Equations
    Unknowns
  • Transform DAEs to frequency domain by DTFT
  • State unknowns are Fourier coefficients of

, gf0
gf0
, gf0
, gf0
gf0
, gf0
gf0
14
Harmonic balance PSS-SF Jacobian
  • Jacobian matrix
  • Compute sensitivities of device contributions to
    gf0

gf0
gf0
gf0
gf0
gf0
15
Search-based methods
gf0
  • The problem of parameter finding
  • Solved by a sequence of conventional PSS analyses
  • Update rule for parameter value
  • Bisection method is the simplest
  • Newton method requires the sensitivity
  • Search-based methods are slower than PSS-SF

gf0
16
Example a ring oscillator
  • Frequency-tuning parameters
  • Capacitors, gf0 is C
  • MOSFET sizes, gf0 is WMp

Mp1
Mp2
Mp3
C1
C2
C3
17
PSS-SF convergence process
  • MOSFET sizes tune the frequency
  • Initial guess gf0 19.5 mm
    T 2.51 ns
  • PSS-SF iterations
  • Solution gf0 13.8 mm T
    3.00 ns

5
3
3
Output voltage Volts
0
Ttarget
0
1
2
0.5
1.5
2.5
Time ns
18
Newton search convergence process
  • MOSFET sizes tune the frequency
  • Initial guess gf0 19.5 mm
    T 2.51 ns
  • Search iterations
  • Solution gf0 13.8 mm T
    3.00 ns

Conventional PSS iterations
5
3
3
Output voltage Volts
0
Ttarget
0
1
2
0.5
1.5
2.5
3.5
Time ns
19
Comparison
  • PSS-SF
  • PSS-SF iterations
  • Newton-Raphson search
  • Conventional PSS iterations
    (28654)

7
gf0 13.8 mm
25
gf0 13.8 mm
20
Summary of simulation results
  • Iteration count
  • PSS-SF
  • Bisection
  • Newton
  • PSS-SF is 6x faster than Bisection
  • PSS-SF is 3x faster than Newton
  • PSS-SF successfully used to tune many large LC
    and ring oscillators with hundreds of transistors

gf0 is
21
Summary
  • PSS-SF PSS with a Specified Frequency
  • New design-oriented analysis
  • Finds the value of a circuit parameter
  • Oscillation frequency is a design specification
  • General and handles any frequency-tuning
    parameter
  • More efficient than conventional search-based
    approaches
  • Simulation results in good agreement with
    conventional PSS analysis
Write a Comment
User Comments (0)
About PowerShow.com