Title: Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen
1Double Beta DecayandNeutrino MassesAmand
FaesslerTuebingen
- Accuracy of the Nuclear Matrix Elements.
- It determines the Error of the Majorana Neutrino
Mass extracted
2Neutrinoless Double Beta Decay
0
1
2-
ß-
ß-
e-
e-
0
Egt2me
0
32?ßß-Decay (in SM allowed)
- Thesis Maria Goeppert-Mayer
- 1935 Goettingen
P
P
n
n
4O?ßß-Decay (forbidden)
- only for Majorana Neutrinos
- ? ?c
P
P
Left
?
Phase Space 106 x 2?ßß
Left
n
n
5GRAND UNIFICATION
- Left-right Symmetric Models SO(10)
- Majorana Mass
6P
P
e-
?
?
e-
L/R
l/r
n
n
7 L/R
l/r
P
P
l/r
?
light ? heavy N Neutrinos
l/r
n
n
8Supersymmetry
- Bosons ? Fermions
- --------------------------------------------------
--------------------- -
Neutralinos - Neutralinos
P
P
e-
e-
Proton
Proton
u
u
u
u
d
d
Neutron
Neutron
n
n
9Theoretical DescriptionSimkovic, Rodin, Benes,
Vogel, Bilenky, Salesh, Gutsche, Pacearescu,
Haug, Kovalenko, Vergados, Kosmas, Schwieger,
Raduta, Kaminski, Stoica, Suhonen, Civitarese,
Tomoda et al.
P
k
0
e2
P
k
e1
k
?
Ek
1
2-
n
Ei
n
0
0
0?ßß
10Neutrinoless Double Beta- Decay Probability
11Effective Majorana Neutrino-Mass for the
0nbb-Decay
Tranformation from Mass to Flavor Eigenstates
CP
12Neutrino-Masses from the 0?bband Neutrino
Oscillations
- Solar Neutrinos (CL, Ga, Kamiokande, SNO)
- Atmospheric ? (Super-Kamiokande)
- Reactor ? (Chooz KamLand)
- with CP-Invariance
13- ?1, ?2, ?3 Mass States
- ?e, ?µ, ?t Flavor States
- Theta12 32.6 degrees Solar KamLand
- Theta13 lt 13 degrees Chooz
- Theta23 45 degrees S-Kamiokande
D m 212(solar ) 810(-5)
eV2 Dm223(atmospheric ) 2.510(-3)
eV2
14OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m? OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m?
Normal m3 m2 m1 m1ltltm2ltltm3 Inverted m2 m1 m3 m3ltltm1ltltm2
Bilenky, Faessler, Simkovic P. R. D
70(2004)33003
15Bilenky, Faessler, Simkovic, Phys.Rev.
D70033003(2004) hep-ph/0402250
16 Bilenky, Faessler, Simkovic, Phys.Rev.
D70033003(2004) hep-ph/0402250
17The best choice
- Quasi-Particle-
- Quasi-Boson-Approx.
- Particle Number non-conserv.
- (important near closed shells)
- Unharmonicities
- Proton-Neutron Pairing
Pairing
18(No Transcript)
19Nucleus 48Ca 76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 134Xe 136Xe 150Nd
T1/2 (exp) years gt9.5 1021 gt1.9 1025 gt1.4 1022 gt1.0 1021 gt5.5 1022 gt7.0 1022 gt8.6 1022 gt1.4 1022 gt5.8 1022 gt7.0 1023 gt1.7 1021
Ref. You Klap- dor Elli-ott Arn. Ejiri Dane-vich Ales. Ales. Ber. Staudt Klimenk.
ltmgteV lt22. lt0.47 lt8.7 lt40. lt2.8 lt3.8 lt17. lt3.2 lt27. lt3.8 lt7.2
?m(p)/M(n) lt200. lt0.79 lt15. lt79. lt6.0 lt7.0 lt27. lt4.9 lt38. lt3.5 lt13.
?(111)10-4 lt8.9 lt1.1 lt5.0 lt9.4 lt2.8 lt3.4 lt5.8 lt2.4 lt6.8 lt2.1 lt3.8
Only for Majorana ? possible.
20Contribution of Different Multipoles to M(0n)
21g(A)4 1.254 2.44 fit to 2nbb
Rodin, Faessler, Simkovic, Vogel, Mar 2005
nucl-th/0503063
22Overlap of Wave Functions of the not involved
core of the initial and final nuclei.
Benesch, Faessler, Simkovic Preliminary (July
2005)
Ge76
Benes, Faessler, Simkovic
23Overlap of the core added to the 0nbb-decay and
new 2nbb-decay data (NEMO).
24R-QRPA-0nbb-Decay Nuclear Matrix Elements with
Lipkin-Nogami ltNgt and ltN²gt and Overlap of the
Core.
Benesch, Faessler, Simkovic (July
2005) Preliminary
No experimental error included
Closed Shells involved
20 50 82
25Renormalized QRPAwith Lipkin-Nogamiincluding
the experimental error of the 2nbb decay
26Relation of M(0n) on M(2n) independent on Size of
Basis ( 21 and 9 or 13 levels)
Ratio M(0n)/M(2n) with g(pp) fixed to M(2n)
independent of basis size
27 2.76 (QRPA) 2.34 (RQRPA)
Muto corrected
28 M0? (QRPA)O. Civitarese, J. Suhonen,
NPA 729 (2003) 867
- Nucleus their(QRPA, 1.254) our(QRPA,
1.25) - 76Ge 3.33
2.68(0.12) - 100Mo 2.97
1.30(0.10) - 130Te 3.49 1.56(0.47)
- 136Xe 4.64
0.90(0.20) - g(pp) fitted differently
- Higher order terms of nucleon
- Current included differently with Gaussian
form factors based on a special quark model (
Kadkhikar, Suhonen, Faessler, Nucl. Phys.
A29(1991)727). Does neglect pseudoscalar
coupling (see eq. (19a)), which is an effect of
30. - We Higher order currents from Towner and
Hardy. - What is the basis and the dependence on the size
of the basis? - Short-range Brueckner Correlations not included.
But finite size effects included. - We hope to understand the differences. But for
that we need to know their input parameters (
g(pp), g(ph),basis, )!
29Neutrinoless Double Beta Decay
0
1
x x x
2-
ß-
ß-
e-
e-
0
Egt2me
0
xxx Gamov-Teller single beta decay in the second
leg fitted with g(pp) by Suhonen et al..
Underestimates the first leg. We fit the full
2nbb decay by adjusting g(pp).
30Fit of g(pp) to the single beta (2. leg) and the
2n double beta decay (small and large basis).
Fit to 1 to 0
Fit to 2nbb
31(No Transcript)
32Uncorrelated and Correlated Relative
N-N-Wavefunctionin the N-N-Potential
Short Range Correlations
33Jastrow-Function multiplying the relative N-N
wavefunction
(Parameters from Miller and Spencer, Ann. Phys
1976)
34Influence of Short Range Correlations
(Parameters from Miller and Spencer, Ann.
Phys 1976)
35Contribution of Different Multipoles to the zero
Neutrino Matrixelements in QRPA
s.r.c. short range correlations h.o.t. higher
order currents
Different Multipoles
- a) 76Ge small model space ( 9 levels) b)
76Ge large model space (21 levels) - C) 100Mo small model space ( 13 levels) d)
100Mo large model space ( 21 levels)
36Comparison of 2nbbHalf Lives with Shell model
Results from Strassburg
370nbb-Decay Matrix Elements in R-QRPA and the
Strassburg Shell Model
38Contribution of GT 1 States and the Sum of all
other States to M(0n)
39Multipole Decomposition of M(0n) in QRPA
40(No Transcript)
41(No Transcript)
42 M0? (R-QRPA 1.25) S. Stoica,
H.V. Klapdor-Kleingrothaus, NPA 694 (2001) 269
-
- A similar procedure of fixing g(pp) to the two
neutrino decay in one basis (?). - Higher order terms of nucleon
- current not considered
- Nucleus l.m.s s.m.s
our - 76Ge 1.87 (l12) 3.74 (s9)
2.40(.12) - 100Mo 3.40 4.36
1.20(.15) - 130Te 3.00 4.55
1.46(.46) - 136Xe 1.02 1.57
0.85(.23) - Model space dependence ?
- Disagreement also between his tables and figures
for R-QRPA and S-QRPA!
43Neutrinoless Double Beta Decay Matrix
ElementsEVZ-88 Engel, Vogel, Zirnbauer MBK-89
Muto. Bender, Klapdor T-91 Tomoda SKF-91
Suhonen, Khadkikar, Faessler PSVF-96 Pantis,
Simkovic, Vergados, Faessler AS-98 Aunola,
Suhonen SPVF-99 Simkovic, Pantis, Vergados,
Faessler SK-01 Stoica, Klapdor CS-03
Civitarese, Suhonen.
44Neutrinoless Double Beta Decay Matrix
ElementsEVZ-88 Engel, Vogel, Zirnbauer MBK-89
Muto. Bender, Klapdor T-91 Tomoda SKF-91
Suhonen, Khadkikar, Faessler PSVF-96 Pantis,
Simkovic, Vergados, Faessler AS-98 Aunola,
Suhonen SPVF-99 Simkovic, Pantis, Vergados,
Faessler SK-01 Stoica, Klapdor CS-03
Civitarese, Suhonen.
45Neutrinoless Double Beta Decay Matrix
ElementsEVZ-88 Engel, Vogel, Zirnbauer MBK-89
Muto. Bender, Klapdor T-91 Tomoda SKF-91
Suhonen, Khadkikar, Faessler PSVF-96 Pantis,
Simkovic, Vergados, Faessler AS-98 Aunola,
Suhonen SPVF-99 Simkovic, Pantis, Vergados,
Faessler SK-01 Stoica, Klapdor CS-03
Civitarese, Suhonen.
46Neutrinoless Double Beta Decay and the
Sensitivity to the Neutrino Massof planed
Experiments
expt. T1/2 y ltmvgt eV
DAMA (136Xe) 1.2 X 1024 2.3
MAJORANA (76Ge) 3 X 1027 0.044
EXO 10t (136Xe) 4 X 1028 0.012
GEM (76Ge) 7 X 1027 0.028
GERDA II (76Ge) 1 X 1026 0.16
CANDLES (48Ca) 1 X 1026 0.2
MOON (100Mo) 1 X 1027 0.058
47Neutrinoless Double Beta Decay and the
Sensitivity to the Neutrino Massof planed
Experiments
expt. T1/2 y ltmvgt eV
XMASS (136Xe) 3 X 1026 0.10
CUORE (130Te) 2 X 1026 0.10
COBRA (116Cd) 1 X 1024 1
DCBA (100Mo) 2 X 1026 0.07
DCBA (82Se) 3 X 1026 0.04
CAMEO (116Cd) 1 X 1027 0.02
DCBA (150Nd) 1 X 1026 0.02
48Neutrino-Masses from the 0?bband Neutrino
Oscillations
- Solar Neutrinos (CL, Ga, Kamiokande, SNO)
- Atmospheric ? (Super-Kamiokande)
- Reactor ? (Chooz KamLand)
- with CP-Invariance
49Solar Neutrinos (KamLand)
- (KamLand)
- Atmospheric Neutrinos
-
(Super-Kamiok.)
50Reactor Neutrinos (Chooz)
CP
51- ?1, ?2, ?3 Mass States
- ?e, ?µ, ?t Flavor States
- Theta(1,2) 32.6 degrees Solar KamLand
- Theta(1,3) lt 13 degrees Chooz
- Theta(2,3) 45 degrees S-Kamiokande
52OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m? OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies m?
Normal m3 m2 m1 m1ltltm2ltltm3 Inverted m2 m1 m3 m3ltltm1ltltm2
Bilenky, Faessler, Simkovic P. R. D
70(2004)33003
53 54SummaryAccuracy of Neutrino Masses from 0nbb
- Fit the g(pp) by 2nbb in front of the
particle-particle NN matrixelement include exp.
Error of 2nbb. - Calculate with these g(pp) for three different
forces (Bonn, Nijmegen, Argonne) and three
different basis sets (small about 2 shells,
intermediate 3 shells and large 5 shells) the
0nbb. - Use QRPA and R-QRPA (Pauli principle)
- Use g(A) 1.25 and 1.00
- Error of matrixelement 20 to 40 (96Zr larger
largest errors from experim. values of T(1/2,
2nbb)). - Core overlap reduction by 0.85 (preliminary)
55SummaryResults from 0nbb
- ltm(n)gt(0nbb Ge76, Exp. Klapdor) lt 0.47 eV
- Klapdor et al. from 0nbb Ge76 with R-QRPA (no
error of theory included) 0.15 to 0.72 eV. - ltM(heavy n)gt gt 1.2 GeV
- ltM(heavy Vector B)gt gt 5600 GeV
- SUSYR-Parity l(1,1,1) lt 1.110(-4)
- Mainz-Troisk, Triton Decay m(n) lt 2.2 eV
- Astro Physics (SDSS) Sum m(n) lt 0.5 to 2
eV -
- Do not take democratic
- averaged matrix elements !!!
56Open Problems
- 1. Overlapping but slightly different Hilbert
space in intermediate Nucleus for QRPA from
intial and from final nucleus. -
- 2. Pairing does not conserve Nucleon
- number. Problem at closed shells.
- Particle projection.
- Lipkin-Nogami ltNgt, ltN2gt
- 3. Deformed nuclei?
57SummaryAccuracy of Neutrino Masses by the
Double Beta Decay
- Dirac versus Majorana Neutrinos
- Grand Unified Theories (GUTs), R-Parity
violatingSupersymmetry ?Majorana-Neutrino
Antineutrinos -
-
-
P
P
u
u
u
u
P
P
d
d
d
d
u
u
n
n
n
n
583. Neutrino Masses and Supersymmetry
- R-Parity violating Supersymmetry mixes Neutrinos
with Neutrinalinos (Photinos, Zinos, Higgsinos)
and Tau-Susytau-Loops, Bottom-Susybottom-Loops ?
Majorana-Neutrinos (Faessler, Haug, Vergados
Phys. Rev. D ) - m(neutrino1) 0 0.02 eV
- m(neutrino2) 0.002 0.04 eV
- m(neutrino3) 0.03 1.03 eV
- 0-Neutrino Double Beta decay
- ltmßßgt 0.009 - 0.045 eV
- ßß Experiment ltmßßgt lt 0.47 eV
- Klapdor et al. ltmßßgt 0.1 0.9 eV
- Tritium (Otten, Weinheimer, Lobashow)
- ltmgt lt 2.2 eV
- THE END
59- ?-Mass-Matrix by Mixing with
- Diagrams on the Tree level
- Majorana Neutrinos
60Loop Diagrams
- Figure 0.1 quark-squark 1-loop contribution to mv
X
X
Majorana Neutrino
61- Figure 0.2 lepton-slepton 1-loop contribution to
mv - (7x7) Mass-Matrix
X
Block Diagonalis.
X
627 x 7 Neutrino-Massmatrix
- Basis
- Eliminate Neutralinos in 2. Order
separabel
Mass Eigenstate
Vector in flavor space
for 2 independent and possible
63 64Horizontal U(1) Symmetry
- U(1) Field
- U(1) charge
- R-Parity breaking terms must be without
- U(1) charge change (U(1) charge conservat.)
- Symmetry Breaking
65How to calculate ?i33 (and ?i33) from ?333?
- U(1) charge conserved!
- 1,2,3 families
66- gPP fixed to 2?ßß M(0nbb) MeV(-1)
- Each point (3 basis sets) x (3 forces) 9
values
67- Assuming only Electron Neutrinos
- (ES) 2.35106 F
- (CC) 1.76106 F
- (NC) 5.09106 F
- Including Muon and Tauon ?
F(?e) 1.76106 (CC)
F(?µ?t) 3.41106 (CCES)
F(?e?µ?t) 5.09106 (NC)
F(?-Bahcall) 5.14106
68(No Transcript)