Title: Distributed localization in wireless sensor networks
1Distributed localization in wireless sensor
networks
- Koen Langendoen
- Niels Reijers
- Delft University of Technology
- The Netherlands
2Technology trend
- Small integrated devices
- Smaller, cheaper, more powerful
- PDAs, mobile phones
- Many opportunities, and research areas
- Power management
- Distributed algorithms
3Wireless sensor networks
- Wireless sensor node
- power supply
- sensors
- embedded processor
- wireless link
- Many, cheap sensors
- wireless ? easy to install
- intelligent ? collaboration
- low-power ? long lifetime
4Possible applications
- Fire rescue
- breadcrumbs
- exit path
- hazard detection
- Environmental monitoring
- detecting forest fires
- Monitoring bulk goods (potatoes)
- mix sensors with goods
- temperature, humidity
5Required technologies
- Efficient data routing
- ad-hoc network
- one or more datasinks
- In-network data processing
- large amounts of raw data
- limited power and bandwidth
- Node localization
6Ad-hoc localization
- Many nodes (gt 100)
- NO infrastructure
- NO central processing
- Sparse anchor nodes
- known position
- Other nodes determine position using this data
- Distance measurement
7Ad-hoc localization
- 2D, static node positions
- Several different algorithms
- have been proposed
- 3 will be compared
- Simulations on
- DAS2 supercomputer
8Main result
- no one size fits all
- Best algorithm depends on
- error in range measurement (range variance)
- connectivity (number of neighbours)
- network topology
- node capabilities
- application requirements
9Three-phase approach
- Determine distance to anchor nodes
- (communication)
- Establish position estimates
- (computation)
- Iteratively refine positions using additional
range measurements - (both)
10Phase 1 Distance to anchor
- Three algorithms
- Sum-dist Savvides et al.
- DV-Hop Niculescu et al., Savarese et al.
- Euclidean Niculescu et al.
- anchors flood network
- with their known position
11Phase 1Sum-dist
- Anchors
- flood network with known position
- Nodes
- add hop distances
- require range measurement
B
C
A
12Phase 1 DV-hop
- Anchors
- flood network with known position
- flood network with avg hop distance
- Nodes
- count hops to anchors
- multiply with avg hop distance
3 hops
B
avg hop 4
C
A
13Phase 1Euclidean
- Anchors
- flood network with known position
- Nodes
- determine distance by
- range measurement
- geometric calculation
- require range measurement
B
C
A
14Phase 1Euclidean (2)
D
G
E
Using AEGF A-G 8
...or 3
F
Using AEGD A-G 8
...or 0.5
A
15Phase 1Euclidean (3)
- Needs high connectivity
- Error prone (selecting wrong distance)
- Perfect accuracy possible
B
D
G
E
C
F
A
16Phase 1Comparison
- Range
- measurement
- Very accurate Euclidean
- Reasonable Sum-dist
- None / very bad DV-hop
17Phase 2Determining position
- Two algorithms
- Lateration
- very common
- local triangulation
- solve Axb
- Min-max Savvides et al.
B
C
A
18Phase 2Min-max
- Using range to anchors to determine a bounding
box - Use center of box as
- position estimate
B
C
A
19Comparison distance error
20Comparison distance bias
21A problem with Min-max
- Very sensitive to anchor placement
22Phase 1 2 combined
23Phase 1 2 combined
Euclidean very sensitive to both range variance
and connectivity
24Error and coverage
25Matrix
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity) Radio range (connectivity)
16 (15.3) 14 (12.0) 12 (8.8) 10 (6.4) 8 (4.1)
Range variance 0 Eucl Lat Eucl Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.025 Sum-d Lat Sum-d MM Sum-d MM Sum-d MM DV-hop MM
Range variance 0.05 Sum-d Lat Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.1 Sum-d MM Sum-d Lat Sum-d MM Sum-d MM DV-hop MM
Range variance 0.25 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
Range variance 0.5 DV-hop Lat DV-hop MM DV-hop MM DV-hop MM DV-hop MM
26Phases 1 and 2
- Position error usually 30 of the radio range or
higher - Range measurements between nodes only used to
determine anchor distance - Can we do better?
27Phase 3 Iterative refinement
- obtain initial position (phases 1 and 2)
- broadcast my position
- iteratively refine position using
- ranges to direct neighbours
- their initial positions
28Phase 3Iterative refinement
- Initial estimate
- Receive neighbour positions
- Local lateration
A
29Phase 3 Position error
30Phase 3 Coverage
31Conclusion
- No one size fits all
- Refinement needs better coverage to be useful
- Lots of room for improvement in all phases
- Details in Tech Report PDS-2002-03
- (http//pds.twi.tudelft.nl/reports/2002/PDS-2002-0
03)
32What is wrong?
- Bad topology
- identical hop-TERRAIN positions
- twins
- Error propagation
- rapid infection of complete network
- hop triangulate hop triangulate
33Confidence weights
- Weight input for triangulation (wAx wb)
- Initialization
- anchors 1.0
- twins, identical hops 0
- others 0.1
- Triangulation
- large residue 0
- small residue avg of input confidences
-