Title: MURI Kick-off Meeting 1998
1MURI Kick-off Meeting 1998
Locomotor Performance in Unstructured Environments
Professor Robert J. Full
University of California at Berkeley Department
of Integrative Biology rjfull_at_socrates.berkeley.ed
u http//polypedal.berkeley.edu
2Control Challenge
Gross
Precise
Control
Repetitive
Novel
Rapid
Slow
Dynamic
Mechanical
Static
(Preflexes)
Neural
Feedforward
Feedforward
Continuous
Feedback
Continuous
Feedback
(Reflexes)
(Reflexes)
3Rough Terrain
Fractal Surface Variation -
3 times the height of the center of mass
4EMG Rough Terrain
Flat
Rough
5Neuro-mechanical Model
aero- , hydro, terra-dynamic
Higher
Sensors
Environment
Centers
Open-loop
Mechanical
Feedforward
Behavior
System
Controller
(CPG)
(Actuators, limbs)
Feedback
Closed-loop
Controller
Adaptive
Sensors
Controller
6Road Map
1. System Compliance 2. Segment Compliance
3.
Joint Compliance 4. Role of muscle
7Spring-mass Systems
Legged
SIX-
Legged
EIGHT-
Cockroach
Crab
B
o
d
y
V
e
r
t
i
c
a
l
TWO-
Legged
Legged
FOUR-
W
e
i
g
h
t
F
o
r
c
e
Fore-aft
F
o
r
c
e
T
i
m
e
Blickhan 1989
Human
Dog
8Leg Stiffness
F
mg
TROTTERS
RUNNERS
HOPPERS
l
100
Blickhan and Full, 1993
Human
Quail
Dog
Cockroach
10
k
rel,leg
Hare
Kangaroo
Crab
1
0.01
0.001
0.1
1
10
100
Mass (kg)
9Road Map
1. System Compliance 2. Segment Compliance
3.
Joint Compliance 4. Role of muscle
10Compliant Segments
1. Survivability/robustness 2. Penetrate new
environments
3. Aid in control 4. Energy storage
11Strain Measurement
12Segment Loading
13MURI Interactions
Rapid Prototyping
Stanfor
d
Muscles and
Motor Control
Learning
Locomotion UC Berkeley
Johns Hopkin
s
MURI
Actuators
Manipulation
Legs
Harvar
d
UC Berkele
y
Sensors / MEMS
Stanfor
d
14Biomimetic Leg
15Road Map
1. System Compliance 2. Segment Compliance
3.
Joint Compliance 4. Role of muscle
16Cockroach
173D Dynamic Model
Rigid Segments
Raibert - Boston Dynamics Inc.
18PolyPEDAL Control
T
o
r
q
u
e
s
Feedforward
M
o
t
o
r
p
r
o
g
r
a
m
?
?
Predictive
L
i
m
i
t
e
d
S
t
a
b
i
l
i
t
y
19PolyPEDAL Control
T
o
r
q
u
e
s
Feedforward Preflexes
M
o
t
o
r
p
r
o
g
r
a
m
I
n
t
r
i
n
s
i
c
m
u
s
c
u
l
o
-
?
s
k
e
l
e
t
a
l
s
y
s
t
e
m
p
r
o
p
e
r
t
i
e
s
Predictive
Z
e
r
o
o
r
d
e
r
L
i
m
i
t
e
d
S
e
l
f
-
s
t
a
b
i
l
i
z
i
n
g
S
t
a
b
i
l
i
t
y
203D PolyPEDAL Control
T
o
r
q
u
e
s
Feedforward Preflexes
R
e
f
l
e
x
e
s
M
o
t
o
r
p
r
o
g
r
a
m
I
n
t
r
i
n
s
i
c
m
u
s
c
u
l
o
-
N
e
u
r
a
l
s
k
e
l
e
t
a
l
s
y
s
t
e
m
f
e
e
d
b
a
c
k
p
r
o
p
e
r
t
i
e
s
Predictive
Z
e
r
o
o
r
d
e
r
S
l
o
w
a
c
t
i
n
g
L
i
m
i
t
e
d
S
e
l
f
-
s
t
a
b
i
l
i
z
i
n
g
A
c
t
i
v
e
S
t
a
b
i
l
i
t
y
S
t
a
b
i
l
i
z
a
t
i
o
n
21MURI Interactions
Rapid Prototyping
Stanfor
d
Muscles and
Motor Control
Learning
Locomotion UC Berkeley
Johns Hopkin
s
MURI
Actuators
Manipulation
Legs
Harvar
d
UC Berkele
y
Sensors / MEMS
Stanfor
d
22Road Map
1. System Compliance 2. Segment Compliance
3.
Joint Compliance 4. Role of muscle
23Muscle Function
1. Simulation 2. Direct measurements
3. Capacity
vs. Realized function 4. Perturbation
experiments
24Insect Advantages
Human
Stimulation (EMG)
Muscle Force
Cockroach
25Musculo-skeletal Model
Hill Model
N
o
r
m
a
l
i
z
e
d
1
M
u
s
c
l
e
F
o
r
c
e
1
N
o
r
m
a
l
i
z
e
d
F
i
b
e
r
V
e
l
o
c
i
t
y
N
o
r
m
a
l
i
z
e
d
1
M
u
s
c
l
e
F
o
r
c
e
1
N
o
r
m
a
l
i
z
e
d
M
u
s
c
l
e
-
F
i
b
e
r
L
e
n
g
t
h
26Muscle Lever
Control
Stimulation
Stimulation
- pattern
- magnitude
- phase
Servo and
Strain
Force
- pattern
Transducer
- magnitude
Frequency
27Workloop Technique
28Muscle EMG
.
100
extension
flexion
Coxa- Femur Joint Angle
80
60
40
(degrees)
177c
20
EMG
179
0.0
0.05
0.2
0.15
0.1
Time (s)
29Muscle Force
.
100
extension
flexion
80
Coxa- Femur Joint Angle
60
40
(degrees)
20
177c
179
Relative Muscle Force
0.0
0.05
0.2
0.15
0.1
Time (s)
30Workloops
Force
(mN)
300
-
200
100
0
9.6
8.8
9.2
9.4
9.8
9.0
Muscle Fiber Length (mm)
31Muscle Capacity
179
Powerspace
177c
Powerspace
Power
2 Muscle Action Potentials
3 Muscle Action Potentials
(W/kg)
100
0.0
80
60
Stimulation phase ()
-100.0
40
in vivo
in vivo
20
conditions
conditions
-200.0
0
20
4
6
8
10
12
14
5
10
15
Muscle Strain
32MURI Interactions
Rapid Prototyping
Stanfor
d
Muscles and
Motor Control
Learning
Locomotion UC Berkeley
Johns Hopkin
s
MURI
Actuators
Manipulation
Legs
Harvar
d
UC Berkele
y
Sensors / MEMS
Stanfor
d
33Conclusions
1. Legged animals behave as spring-mass
systems 2. Segments are compliant - Why?
34Conclusions
3. Distributed control at joints -
Preflexes 4. Musculo-skeletal units are diverse
35Leg Controller