Turing Machines - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Turing Machines

Description:

Alan Turing (1912 - 1954). 2. Standard Turing Machine. Control unit. q0. Tape. Read-write head ... solvable by an algorithm cannot be solved by a Turing machine. ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 31
Provided by: TruHoa3
Category:
Tags: alan | machines | turing

less

Transcript and Presenter's Notes

Title: Turing Machines


1
Turing Machines
  • There are languages that are not context-free.
  • What can we say about the most powerful automata
    and the limits of computation?.
  • Alan Turing (1912 - 1954).

2
Standard Turing Machine
Tape
Read-write head
Control unit q0
3
Standard Turing Machine
  • M (Q, ?, ?, ?, q0, , F)
  • Q finite set of internal states
  • ? finite set of symbols - tape alphabet
  • ? ? blank
  • ? ? ? - finite set of symbols - input
    alphabet
  • ? Q ? ? ? Q ? ? ? L, R transition function
  • q0 ? Q initial state
  • F ? Q set of final states

4
Standard Turing Machine
  • ? Q ? ? ? Q ? ? ? L, R

current symbol
head move direction
replacing symbol
5
Example
  • ?(q0, a) (q1, d, R)

current symbol
head move to the right
replacing symbol
6
Halt State
  • A state for which ? is not defined.
  • Assume that all final states are halt states.

7
Example
  • M (Q, ?, ?, ?, q0, , F)
  • Q q0, q1 ?(q0, a) (q0, b, R)
  • ? a, b ?(q0, b) (q0, b, R)
  • ? a, b, ?(q0, ) (q1, , L)
  • F q1

8
Example
  • M (Q, ?, ?, ?, q0, , F)
  • Q q0, q1 ?(q0, a) (q1, a, R)
  • ? a, b ?(q0, b) (q1, b, R)
  • ? a, b, ?(q0, ) (q1, , R)
  • F ? ?(q1, a) (q0, a, L)
  • ?(q1, b) (q0, b, L)
  • ?(q1, ) (q0, , L)

9
Instantaneous Description
  • a1a2 ... ak-1qakak1 ... an
  • current state current symbol

10
Instantaneous Description
  • move abq1cd ? abeq2d
  • if ?(q1, c) ? (q2, e, R)

11
Instantaneous Description
  • x1qix2 ?M y1qjy2
  • x1qix2 ?M y1qjy2

12
Turing Machines as Language Accepters
  • Let M (Q, ?, ?, ?, q0, , F) be a TM.
  • L(M) w ? ? q0w ?M x1qfx2 where qf ? F and
    x1, x2 ? ?

13
Example
  • L 0
  • M (Q, ?, ?, ?, q0, , F) ?

14
Example
  • L anbn n ? 1
  • M (Q, ?, ?, ?, q0, , F) ?

15
Example
  • L anbncn n ? 1
  • M (Q, ?, ?, ?, q0, , F) ?

16
Turing Machines as Language Transducers
  • q0w ?M qfw
  • function w f(w)

17
Turing Machines as Language Transducers
  • A function f with domain D is said to be
    Turing-computable if there exists some Turing
    machine M (Q, ?, ?, ?, q0, , F) such that
  • q0w ?M qff(w) qf ? F
  • for all w ? D.

18
Example
  • f(x, y) x y
  • M (Q, ?, ?, ?, q0, , F) ?

19
Example
  • f(w) ww w ? 1
  • M (Q, ?, ?, ?, q0, , F) ?

20
Example
  • f(x, y) true if x ? y
  • or f(x, y) false otherwise
  • M (Q, ?, ?, ?, q0, , F) ?

21
Combining Turing Machines
  • x y if x ? y
  • f(x, y)
  • 0 if x ? y
  • M (Q, ?, ?, ?, q0, , F) ?

22
Combining Turing Machines
x y
Adder A
x ? y
x, y
f(x, y)
Comparer C
x ? y
Eraser E
0
23
Combining Turing Machines
  • qcw(x)0w(y) ?M qAw(x)0w(y) if x ? y
  • qcw(x)0w(y) ?M qEw(x)0w(y) if x ? y
  • qAw(x)0w(y) ?M qAfw(x y)0
  • qEw(x)0w(y) ?M qEf0

24
Macroinstructions
  • if a then qj else qk
  • ?(qi, a) (qj0, a, R)
  • ?(qi, b) (qk0, b, R)
  • ?(qj0, c) (qj, c, L)
  • ?(qk0, c) (qk, c, L)

25
Subprograms
Region separator


Workspace for A
Workspace for B
26
Example
  • f(x, y) x ? y
  • For each 1 in x, create a 1-string of length y.

27
Turing's Thesis
  • Turing machine appears to be simple.
  • Turing seems to approach a typical digital
    computer.

28
Turing's Thesis
  • Any computation that can be carried out by
    mechanical means can be performed by some Turing
    machine.

29
Turing's Thesis
  • Anything done by existing digital computers can
    be done by a Turing machine.
  • No problem solvable by an algorithm cannot be
    solved by a Turing machine.
  • No alternative mechanical computation model is
    more powerful than the Turing machine model.

30
Homework
  • Exercises 2, 5, 8, 9, 16, 19 of Section 9.1.
  • Exercises 1, 2, 3, 4, 9 of Section 9.2.
  • Presentations
  • Section 12.1 Computability and Decidability
    Halting Problem
  • Section 13.1 Recursive Functions
  • Post Systems Church's Thesis
  • Section 13.2 Measures of Complexity
    Complexity Classes
Write a Comment
User Comments (0)
About PowerShow.com