Title: A Different'iated Algebra Classroom
1A Different.iated Algebra Classroom
- B.J.Haan Conference 2006
- Valorie Zonnefeld
- Western Christian High School
2(No Transcript)
3The river-crossing problem.
- Nineteen campers are hiking through Acadia
National Park when they come to a river. The
river moves too rapidly for the campers to swim
across it.
4The campers have 1 canoe, which holds 3 people.
On each trip across the river, 1 of the 3 canoe
riders must be an adult. There is only 1 adult
among the 19 campers. How many trips across the
river are necessary to get all the children to
the other side?
5Rationale for Differentiation
- Instruction can be a one size fits all approach
- Proverbs 226, Train a child in the way he
should go, and when he is old he will not turn
from it - Gives students an opportunity to express
themselves - Gives students ownership for their learning
6Differentiated Instruction
- suggests that you can challenge all learners by
providing materials and tasks at varied levels
of difficulty, with varying degrees of
scaffolding, through multiple instructional
groups, and with time variations...
7Differentiated Instruction
- Further, differentiation suggests that teachers
can craft lessons in ways that tap into multiple
student interest to promote heightened learner
interest.
- Carol Ann Tomlinson
8- Differentiated instruction represents a
proactive approach to improving classroom
learning for all students. Kim Pettig
9Characteristics
- Teachers begin where the students are
- Engages students through different learning
modalities - Students compete against themselves
- Teachers use classroom time flexibly
- Teachers are diagnosticians, prescribing the best
possible instruction for each student.
103 Key Questions
- WHAT IS THE TEACHER DIFFERENTIATING?
- HOW IS HE DIFFERENTIATING?
- WHY IS HE DIFFERENTIATING?
11Tomlinsons 8 Strategies
- Compacting the curriculum
- Independent study
- Interest groups
- Tiered assignments
- Flexible grouping
- Learning centers
- Adjusting questions
- Mentorships
12Strategy 1
- Compacting the curriculum
13Green Contract
- A- or higher.
- May skip all odd problems from assignments.
- May loop out of class lectures.
- Choose a project
- Green projects are more in depth.
14Blue Contract
- B or higher
- May skip every third problem in assignments
- May loop in and out of class lectures.
- Choose a project
15Results
- Increase value of mathematics for students who
chose to contract - Most beneficial to students with A- and above
- Decreased motivation for the whole class
16Strategy 2
17Strategy 3
18Strategy 4
19Circle one
- GREEN I know and can use the distributive
property. -
- YELLOW I have heard of the distributive property
before and vaguely remember it. -
- RED I do not know what the distributive property
is or I do not understand it. -
- Solve 9 2(2x 2) 2
20Green
- Do 2 problems from each section in the assignment
from the book AND choose 1 of the following
projects - Research the history of the distributive
property and give a report or presentation - Research the applications of the distributive
property and demonstrate or give a report
21Green
- Be a student aid to others in the classroom
(limit one aid per day) - Select a project from the end of the chapter in
the book. - Propose another idea. Include your timeline.
22Yellow
- 1.a) Calculate mentally Using the distributive
property how much do 5 tapes cost if they sell
for 8.97 each? - b) Monicas hourly wage is 12.00. If she
receives time and a half for overtime, what is
her overtime- hourly wage?
23Yellow
- 2. Write five problems similar to the above
examples that can be solved mentally using the
distributive property. Exchange your five
problems with another group and solve them.
Compare your answers. - 3. Complete the assignment at the end of the
lesson. You may work in groups if you desire.
24Red
- 1. Work with Mrs. Z.
-
- 2. Do the first five problems of the assignment.
- 3. Complete the assignment. Feel free to work
with a neighbor.
25Strategy 5
26Strategy 6
27Strategy 7
28Strategy 8
29Differentiated instruction has as many faces as
it has practitioners and as many outcomes as
there are learners. Kim Pettig
30TIPS FOR SUCCESS
- Clearly express criteria for success
- For projects, stress planning and check-in dates.
- Provide choice for your students
- Use task cards or assignment sheets
- Give students as much responsibility for their
learning as possible
31TIPS FOR SUCCESS
- Begin with a familiar topic
- Take small steps
- Gather various resources
- Clearly express criteria for success
- Have a plan to help students when you are busy.
- Use a Sponge Activity
32If you finish early
- Choose another project
- Do Math Stumpers
- Explore math web sites
- Try to solve Tangrams
- Try to solve wooden puzzles
- Play a 2 person game
- Help your neighbor
33Possible Positives
- Teachers are partners with their students
- Student interest is tapped
- Greater retention
- Choice is motivating
- Allows students to learn at different paces
34Possible Positives
- Allows for multiple forms of intelligence
- Gives teachers a different view of students
- Challenges all students
35POSSIBLE NEGATIVES
- Students need to flex their learning styles
- Preparation time
- Fear or frustration by high-achieving students
and parents - Classroom time
- Charting and assessing growth
36POSSIBLE ASSESSMENT STRATEGIES
- Portfolios
- Two grades personal grade grade compared to
class - Give superscripts A1, A2, or A3
- Replacement grade
37CHRISTIAN RELEVANCE
- Acknowledges students uniqueness
- Avoids a narrow sense of intelligence
- Can create a sense of community
- Assesses student growth
- As opposed to their gift