Fundamentals Elements of Network and Cyber Security - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

Fundamentals Elements of Network and Cyber Security

Description:

Substitute each letter with another letter. which is 3 letters away in the alphabet. ... message-digest, finger-print, one-way-function. The hash of a message m, ... – PowerPoint PPT presentation

Number of Views:181
Avg rating:3.0/5.0
Slides: 45
Provided by: cso7
Learn more at: https://www.cs.odu.edu
Category:

less

Transcript and Presenter's Notes

Title: Fundamentals Elements of Network and Cyber Security


1
Fundamentals Elements of Network and Cyber
Security
  • Hussein Abdel-Wahab, Ph.D.
  • Professor and Graduate Program Director
  • Departmet of Computer Science
  • Old Dominion University
  • wahab_at_cs.odu.edu
  • www.cs.odu.edu/wahab

2
General Concepts
  • Players Alice, Bob and Trudy.
  • How to communicate securely
  • over an insecure medium?
  • Alice should be able to send a message to Bob
  • That Trudy can't understand or modify
  • Bob is assured that Alice is the sender.

3
Types of Attaches
  • Passive Attacks
  • The attacker eavesdrops and read/record
    messages in transit.
  • Active Attacks The attacker may 
  • Transmit new messages,
  • Replay old messages,
  • Modify/Delete  messages on transit.

4
Fundamental Tenet of Cryptography
  • If lots of smart people failed to solve a
    problem, then it probably won't be solved (soon).
  • The time required to break  a code should be 
    longer than the time the encrypted data must
    remain secret.
  • The value of most data decreases overtime.

5
Cryptographic System  Algorithm Key
  • It is perfectly OK to let everyone know the
    algorithm. Knowledge of the algorithm without the
    key does not help unmangle the information.
  • Publishing the algorithm provides an enormous
    amount of free consulting to uncover weaknesses.

6
Layers and Cryptography
  • Application (e.g., PEM),
  • Transport (e.g., SSL),
  • Network (e.g., IPsec).

7
Traditional use of Cryptography
  •  Plaintext gtgtgt Ciphertext gtgtgt Plaintext       
    (Encryption)       (Decryption)
  • Cryptographer Invent clever secret codes.
  • Cryptanalyst Attempt  to break these codes.

8
Computational Difficulty
  • Example combination lock
  • Typically require 3 numbers between 1 and 40.
  • If it takes 10 seconds for a good
    guy, it would take 10(403) seconds
  • or about 1 week for the bad
    guy.
  • By requiring 4 numbers
  • If  it takes 13 seconds for
    the good guy,
  • it would take  13(404)
    seconds
  • or about 1 year for the bad
    guy.

9
Example of Secret Codes
  • Caesar cipher
  • Substitute each letter with another
    letter
  • which is 3 letters away in the alphabet.
  • E.g., dozen -gt grcho.
  • Mono-alphabetic cipher
  • Arbitrary map one letter to another.
  • There are 26!4(1026) possibilities. If
    each possibility takes 1 microsecond
  • it would take 10 trillion years to try
    all possibilities.
  • However statistical analysis of 
    language
  • makes it much easier to break.

10
Secret Key Cryptography (Symmetric Cryptography)
  •                  (encryption)
  • plaintext gtgtgt ciphertext
                                             
    key                       
  • ciphertext gtgtgt plaintext
                  (decryption)

11
Uses of Symmetric Cryptography
  • Transmission Over an Insecure Channel
  • An eavesdropper will only see unintelligible
    data.
  • Secure Storage on Insecure Media
  • Forgetting the key makes the data irrevocably
    lost!
  • Authentication Alice authenticating Bob
  •         Alice           
            Bob
  •   challenge      r gtgtgtgtgtgt
       r
  • response       r Kc        ltltltltltltlt  
       cKr
  •     

12
Public Key Cryptography (Asymmetric
Cryptography)
  • Each individual has two keys
  • private key (not revealed to anyone)
  • public key (make it known to everyone)
  •    

  • (encryption) plaintext 
    gtgtgtgtgtgtgtgtgtgt ciphertext
                              
                  public key
  •                 private key    
    ciphertext  
    gtgtgtgtgtgtgtgtgt plaintext                 
    (decryption)  

13
Digital Signature
  •  
  •            
    (signing) plaintext  
    gtgtgtgtgtgtgtgtgt ciphertext                        
                              
    private key  
  •                   
  • public key
                              
    ciphertext   gtgtgtgtgtgtgtgt plaintext
                     (verification)  

14
Uses of Public KeySecret Key establishment
  • Public key cryptographic algorithms are much
    slower than
  • Secret key cryptographic algorithms.
  • Thus they are normally used to establish
    temporary
  • shared secret key for use during a given session.
  • Alice                                
                Bob
  •         K eB         gtgtgtgtgtgtgtgtgt            
    K dB
  •             KmB          gtgtgtgtgtgtgtgtgt           
    KmB
  •         KmA          ltltltltltltltltlt           
    KmA

15
Uses of Public Key Authentication
  • Alice authenticating Bob
  • Alice
    Bob
  • challenge c r eB gtgtgtgtgt c
  • response r ltltltltlt r
    cdB

16
Hash Algorithmsmessage-digest, finger-print,
one-way-function
  • The hash of a message m,
  • h H(m)
  • has the following properties
  • Given m, it is easy to compute h.
  • Given h, it is hard to compute m.
  • Given m, it is hard to find another m'
  • such that H(m) H(m').
  • It is hard to find m1 and m2
  • such that H(m1) H(m2).

17
Message Authentication/Integrity Code (MIC/MAC)
  • Using Secret Key
  •             Alice                    
        Bob
  • m,h, where h H(mK)    gtgt    m,h , OK if h H
    (mK)
  •       
  • Bob is sure that Alice sent m, since she knows K.
  • Bob can NOT prove to any one else that
  • Alice sent him m, since he also knows K!

18
Password Hashing
  • UNIX stores the hash of passwords.
  • For each user U with password P, there is a
    tuple
  • ltU, hgt, where h H(P) 
  • When user U types a password P,
  • UNIX computes H(P)
  • and the use is allowed to login if H(P) h

19
The magic of XOR
  •  
  • 0 0 0 , 0 1 1, 1 0 1 1 1
    0
  • Note that
  •     a  a 0  
  • a  bb a (since b b 0)
  • A Simple XOR symmetric algorithm
  • (P plain, C cipher, K key)
  • Encrypt C P K
  • Decrypt P C K (since (P K) K
    P)

20
Secret Key CryptographyPrinciple
  • Secret key cryptographic systems takes
  • a key K and a data block M and generate a
    one-one mapping that looks completely random.
  • I.e., any single bit change of K or M result
    in a totally independent random output.

21
Secret Key Cryptography Transformation
  • Substitution For small blocks of size k bits,
    specify for each of the 2k possible values of the
    input, the k-bit output.  
  • Permutation Specify for each input bit, the
    output position to which it goes.
  • Example DES (Data Encryption Standard)

22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
Hashes/Message-DigestsPrinciple
  • Major Algorithms
  • Ron Rivest Message Digest (MD2, MD4 and MD5)
    128-bit.
  • NIST  Secure Hash Algorithm SHA-1 160-bit.
  • Both takes an arbitrary-length string and map it
    to a
  • fixed-length quantity that appears to be randomly
    chosen.
  • They are easy to compute and are computed in
    rounds.
  • It is computationally infeasible to find
  • A message that has a given message digest.
  • A different  message with the same message
    digest.
  • Two messages that have the same message digest.

27
Things to do with a Hash
  • Authentication
  •      Alice        
           Bob
  •  challenge   r gtgt
    r   
  • response   d ltlt
    dMDKr
  • Alice computes MDKr and if equal d, then Bob
    knows K. 
  • Computing a MAC
  •      Alice                       
    Bob
  •  m,d where d MD(Km) gtgt m,d, OK if d MD
    (Km)

28
Encryption using Hash
  • Generating one-time pad
  • Both Alice and Bob knows he shared secret K
  • and generates
  •          b1 MD(K)      bi MD(Kbi-1), i2,3,
    .... 
  •         
  •    Alice                        Bob
  • ci mi bi             gtgtgtgt      mi ci
    bi  

29
(No Transcript)
30
Public Key CryptographyPrinciple
  • Secret key algorithms  Hash algorithms similar.
  • Public key algorithms are different from each
    other.
  • What is common among all public key algorithms
    is
  • each participant has two  keys, public and
    private,
  • most of them are based on modular
    arithmetic
  • x mod n is the remainder of x when divided by n.
  • Example 24 mod 10 4

31
Multiplication mod 10
  •  
  • Multiplication by 1, 3, 7 and 9 works as cipher
    since it performs 1-1 mapping.
  • Each "1" is the intersection of k and k-1, e.g. k
    7, then k-1 is 3.
  • Example  if k 7, then 1987 is encrypted to
    7369

32
Totient Function
  • What is so special about the set 1,3,7,9 ?
  • These numbers are relatively prime to 10,
  • i.e., they do not share with 10 any common
    factors other than 1.
  • How many numbers lt n are relatively prime to n?
  • This quantity is referred to as Ø(n) and is
    called the totient function
  • If n is prime
  • then 1,2, ..., n-1 are all relatively prime
    and Ø(n) n-1.
  • If n p.q where p and q are two distinct primes,
  • then Ø(n) (p-1)(q-1).
  • Example  for n 10 2.5, Ø(10)
    (2-1).(5-1)1.44, which is the
    set 1,3,7,9.

33
Exponentiation mod 10
  • Examples  4 2 6, 8 8 6, 76  9
  • An exponentiative  inverse of e is the number  d 
    such that
  • e.d 1 mod Ø(n)
  • Example For n 10, Ø(10)4
  • e3 and d7 are exponentiative inverses since
    3.721 1 mod 4
  • In public cryptography lte, ngt is public key   
    ltd,ngt is  private key

34
Encrypt / Decrypt Sign / Verify
  • Encrypt / Decrypt
  • To encrypt m  compute  c me mod n
  • To decrypt c   compute  m cd mod n
  • Example 
  • encrypt m 8 c 83 2
  • decrypt c2  m 27 8
  • Sign / Verify
  • To sign m compute s md mod n
  • To verify s compute m se mod n
  • Example
  • sign m 8 s 87 2
  • verify  s2  m 23 8

35
RSA Algorithm(Rivist, Shamir Adleman)
  • Choose two  large primes p and q.   (typically
    256 bits each keep them secret).
  • Compute n p.q Ø(n) (p-1)(q-1).   (it
    is very hard to factor n into p q).
  • Choose a number e relatively prime to Ø(n).
  • Find d as multiplicative inverse of 
  • e mod Ø(n), i.e., e.d 1 mod Ø(n)).
  • public key  lte,ngt     private key  ltd,ngt.

36
RSA works
  • Encrypt/Decrypt
  • To encrypt a message m (ltn) c me mod n
  • To decrypt c m cd mod n
  • This works since
  • cd mod n (me)d mod n  me.d mod n            
      m mod  n   // since e.d 1 mod Ø(n)
                   m                 //
    since m lt n
  • Sign/Verify
  • To sign a message m (ltn) s md mod n
  • To verify s m se mod n
  • This also works since
  • se mod n me.d mod n m mod n m

37
Why is RSA Secure?
  • Every one  knows the public key  lte, ngt.
  • To find the private key ltd,ngt  you  need to know
    Ø(n)
  • since e.d 1 mod Ø(n).
  • To know Ø(n) you need  to know p and q
  • since Ø(n) (p-1).(q-1).
  • Thus to break RSA you should be able to factor n
    to find  p and q.
  • Factoring a big number is hard. (the best
    technique  to factor 512 bit number will take
    30,000 MIPS-years!)
  • Popular RSA keys values
  • public key lt365537, ngt private key ltd ,
    ngt.

38
Efficiency of  RSA Operations
  • How to compute 12354 mod 678?
  • 1232 123.123 15129 213 mod 678 1233
    123.213 26199 435 mod 678 1234 123.435
    53505 621 mod 678 ...... 12354     
    ......                 87  mod 678
  • This requires 54  multiplications and 54
    divisions.  
  • How to compute 12332 mod 678?
  • 1232   123.123 15129       213 mod 678
    1234    213.213 45369       621 mod 678
    1238    621.621 385641     537 mod 678
    12316  537.537 288369     219 mod 678
    12332  219.219 47961       501 mod 678
  • This requires 5  multiplications and 5 divisions
    instead of 32.
  • To efficiently compute  12354 54 in binary as
  • 1          1                   0         
        1                 1             
    0            
  •                      
                                   
  • ((((  (1232) 123      )2        
         )2 123      )2123   )2
  • This requires 8  multiplications and 8 divisions.

39
Diffie-Hellman Key agreement Protocol
  • Alice and Bob agree on  p (large prime)   g lt
    p.  
  •              Alice                                
                                   Bob
  • Pick SA  (512-bit random number)     Pick SB 
    (512-bit random number)
  • Compute TA ( gSA) mod p       Compute TB
    (gSB) mod p
  •             send    TA       gtgtgtgtgtgtgtgt
    ltltltltltltltltlt      send TB   
  • Compute  X  TB SA mod p     Compute Y TA
    SB mod p 
  • X is the same as Y, why?
  •        X   TBSA  gSBSA    Y   TASB  gSASB
  • No one can compute  g (SASB ) by knowing  g (SA
    )  g (SB )

40
Email Security Protocols
  • PEM (Privacy Enhanced Mail)
  • Add encryption, authentication and integrity
  • to ordinary text messages.
  • MIME (Multipurpose Internet Mail Extensions)
  • Is a standard for encoding arbitrary data in
    email
  • (images, video, etc.).
  • S/MIME Incorporated many principles of PEM 
    into MIME.

41
PEM MIC-CLEAR
  • From Alice To Bob Subject Colloquium
    Date Tue Oct 26, 2005
  • -----BEGIN PRIVACY ENHANCED MESSAGE-----
    Originator-ID-Asymmetric  ltcertificategt
    MIC-Info RSA-MD5, RSA, ltMICgt
  • Dear Bob I would like to invite you to give
    a colloquium next Fall, If you accept, let us
    talk about the details. Alice -----END PRIVACY
    ENHANCED MESSAGE-----

42
PEM ENCRYPTED
  • From Alice To Bob Subject
    Colloquium Date Tue Oct 26, 2005
  • -----BEGIN PRIVACY ENHANCED MESSAGE-----
    DEK-Info DES-CBC, IV MIC-Info RSA-MD5, RSA,
    ltMICgt Recipient-ID-Asymmetric ltRecipient
    certificategt Key-Info RSA, ltkey encrypted with
    recipient  public keygt
  • ltencoded encrypted message using DES-CBCgt
  • -----END PRIVACY ENHANCED MESSAGE-----     

43
SSL/TLSSecure Socket Layer, Netscape Transport
Layer Security, IETF
  • Run as a user-level processes on top of  TCP/IP.
  • Alice        

             Bob
  • I want to talk, ciphers I support, Ra
    --------------------- gt lt ----------------------
    ------ crtificate, cipher I choose, Rb choose
    secret S, compute K f (S,Ra,Rb) SBob ,
    keyed hash of handshake msgs  -------------- gt
                                                    
    compute K f(S,Ra,Rb) lt------------------------ 
      keyed hash of handshake msgs
  • lt--     data protected with keys derived
    from K   --gt
  • Ra and Rb are 32 octets long, the first 4 are the
    time
  • This ensures that Rs are always different.

44
SSL Keys
  • Alice chooses a random number S,
  • called pre-master secret.
  • It is shuffled with Ra Rb to produce
  • a master secret K.
  • The master secret is shuffled with Ra Rb to
    produce 6 keys Three for each side for 
    encryption, integrity, and IV.
  • Note that Alice has authenticated Bob,
  • but Bob has no idea to whom he's talking!
    Normally the server authenticates the user
    using
  • ltname, passwordgt sent securely over the ssl
    connection.

45
Authentication SystemsPassword-based
  • Its not who you are, Its what you know
  • On-line Password attack Easy to defend, e.g.,
    limit  and slow down the number of guesses.
  • Off-line Password attack Capture a quantity X
    derived from the password and take your time to
    guess the password that produces X.
  • (e.g., use a dictionary)

46
Authentication SystemsAddress-based
  • It's not what  you know. It's where you are
  • In Unix /etc/hosts.equiv
  • Contains a list of computers that have
    identical user accounts to allow users on these
    hosts to rlogin without providing passwords.

47
Trusted Intermediaries
  •  
  • For N entities, if each keeps N -1 secrets,
  • then adding a new entity involves adding N new
    secrets. Clearly not practical for large N.
  • KDC (Key Distribution Center) 
  • Keeps N keys, and adding one key for each
    new entity.
  • Alice                        
    KDC               Bob Need to talk to
    Bob  --------------gt                             
    generate random R, R KAX lt---------  X
    KAR , Y KBR  -------gt  R KBY
  • C1  RM1 -----------------------------
    ---------gt  M1 RC1 M2 RC2 
    lt------------------------------------   C2 
    RM2
  • Disadvantages of KDC
  • If compromised, all Keys are compromised.
  • Single point of failure
  • Performance bottleneck.

48
CA Certificate Authority
  • Each entity keeps its private key.
  • The CA  certifies  (sign) that the public key
    belong to the entity.
  • All public key certificates may be kept in one
    place or each  entity keeps its own.
  • Certifies expire after a reasonable period (1
    year). It can be revoked and the CA periodically
    publish a CRL (certificate revocation list) .
  • Clients should check the latest CRL before
    trusting a certificate.

49
Delegation
  •  
  • It's not who you are. It's who you're working for
  • Sometime it is necessary to have some entity act
    on your behave.
  • This is achieved using delegation
  • Generate  a special  message, signed by you
  • (using public key cryptography, or through KDC),
    specifying
  • To whom you are delegating the rights,
  • Which rights are being delegated
  • For how long.

50
Off-Line Password Guessing
  • Obtaining a  hash of a  password h, an attacker
    can guess
  • the password  w and checks to see if h MD (w).
  • If some one obtains  a file F containing the
    hashes of
  • many passwords, e.g., /etc/passwd
  • he can perform a dictionary attack  
  •  for each word w in dictionary D  do
  •    compute h MD (w)
  •   for each e in F do
  •      if e h  then w as a password
  • done
  • done
  • The number of  performed hashes is D

51
Off-Line Password Guessing Adding Salt
  • Storing a random number salt (s) with  h MD
    (ws)
  • makes it harder for  a dictionary attack  
  • for each entry lts, hgt in F  do        for each 
    word w  in the dictionary  D do
  •      compute e   MD (ws)     
    if e h  then w as a password done
  • done
  • The number of performed hashes is D.F

52
Mutual Authentication
  • Shared Secret Alice                            
                           Bob
  • I'm Alice -------------------------------------
    --gt lt -------------------------------------------
    ----- Rb f(K, Rb) -------------------------------
    ---------gt Ra  ----------------------------------
    ------------gt lt----------------------------------
    -------- f(K, Ra)

53
Reducing number of Messages
  •    Packing more information into each message
  •   Alice                                         
                   Bob
  • I'm Alice, Ra   ------------------------------
    -------gt lt---------------------------------------
    ---  Rb, f(K, Ra) f(K, Rb)   --------------------
    ------------------------gt  

54
Reflection Attack!
  • Trudy can impersonate Alice to Bob by
  • opening a second connection to Bob
  • Session1
  • Trudy                                          
                 Bob
  • I'm Alice, Ra   ----------------------------------
    --------------gt
  • lt-------------------------------------------------
    ----- Rb, f(K, Ra)
  • suspend session 1......
  • Session 2 Trudy                             
                           Bob
  • I'm Alice, Rb  -------------------------------
    ---------------gt lt-------------------------------
    -----------------   Rb', f(K, Rb) abort session
    2.......
  • continue  session 1......
  • f(K, Rb)  ----------------------------------------
    -----------------gt

55
Password Guessing Attack!
  • Trudy                                             
                        Bob
  • I'm Alice, Ra   ----------------------------------
    -----------gt
  • lt-------------------------------------------------
    Rb, f(K, Ra)
  • .........
  • suspend session and use
  • Ra, and f(K,Ra) to guess K.

56
Using Time Stamps
  • We can use time stamps to reduce the number of
  • messages to two  
  • Alice                          
                                     Bob
  • I'm Alice, f(K, timestamp)  -------------------
    ------gt lt--------------------------------------
    f(K, timestamp)

57
Mediated AuthenticationNeedham-Shroeder Protocol
  •    
  • Alice                            
    KDC                                Bob  
  • N1, Alice wants Bob  ----------gt
  • lt--------------  KA N1,"Bob", KAB, ticket to
    Bob,             where ticket to Bob KB KAB,
    "Alice"
  • ticket to Bob,  KABN2  -------------------------
    ----------------------gt
  • lt ------------------------------------------------
    ------------ KABN2--, N3
  • KAB N3--  --------------------------------------
    --------------------------gt
  • N is a nonce, a number that is used only once
    (e.g., random number).
  • N1 to prevent Trudy from impersonating KDC and
  • replaying old replies to Alice.
  • N2 and N3 are challenges for mutual
    authentication.
  •  
Write a Comment
User Comments (0)
About PowerShow.com