Title: Multisolitons of a 2 1dimensional vector soliton system
1Multi-solitons of a (21)-dimensional vector
soliton system
- Ken-ichi Maruno
- Department of Mathematics,
- University of Texas -- Pan American
- Joint work with Y. Ohta M. Oikawa
- Kobe Univ.
Kyushu Univ.
Mini-Meeting "Nonlinear Waves and More"
August, 15, 2007 University of Colorado, Boulder
2UTPA (Edinburg)
Population 55,297
McAllen-Edinburg-Mission Area
Population 700,634
3(No Transcript)
4KP-II Line Soliton Solution
Nonlinear wave in Plasma and water wave
5Example Hirota D-operator
6Wronskian Solution
7N-soliton solution
f is a solution of the dispersion relations
We can choose another kind of functions.
8(No Transcript)
9Wronskian
10Web Structure
Non-stationary complex patterns
These are made from Wronskian Solutions
of KP (Biondini Kodama 2003) Classification
of all soliton solutions of KP (Kodama
Biondini Chakravarty)
11Web structure
web structure KP(2003) Biondini
Kodama coupled KP (2002) Isojima,
Willox Satsuma 2D-Toda (2004) Maruno
Biondini
12Theory of KP hierarchy (Jimbo-Miwa, 1983)
Solution
Semi simple Lie algebra
- AKP ( KP) Wronskian
- BKP Pfaffian
- CKP Wronskian
- DKP Pfaffian
Extention of determinant
13Solutions are written by Pfaffian
14Square root of determinant of even antisymmetric
matrix
15Hirota Ohta Kodama KM
16Patterns of DKP equation are very complicated.
Four A-soliton
Two D-soliton
Three D-soliton
Patterns of DKP are classified using Pfaffian.
A-type soliton related to A-type Weyl group
D-type soliton related to D-type Weyl
group. (See Kodama KM, 2006)
Patterns of DKP are made from A and D-type
Weyl group !
17N-soliton interaction
- Equations having determinant type solutions
KP, 2D-Toda, fully
discrete 2D-Toda (Biondini, Kodama,
Chakravarty, KM) - Equations having pfaffian type solutions
DKP (coupled KP)
(Kodama KM)
18Question
- Analysis of N-soliton interaction of equations
having other types of solutions
e.g. Multi-component
determinant
Vector NLS-type solitons
19Vector NLS (coupled NLS) equation
20Vector soliton interaction (vector NLS equation)
- R Radhakrishnan, M Lakshmanan, J Hietarinta 1997
21Remark
- Bright soliton solutions of NLS are
written in the form of two-component Wronskian
(Nimmo Date,Jimbo,Miwa, Kashiwara) - Bright soliton solutions of two-component vector
NLS are written in the form of 3-component
Wronskian (Ohta)
22Multi-component determinant solution of NLS type
equations
Component 1
Component 2
23Two component KP hierarchy (cf. Jimbo Miwa)
24(No Transcript)
25Bilinear forms in 2-component KP hierarchy
2-component Wronskian
26Reduction to NLS
27Gauge factor
NLS 2-component Wronskian n-component NLS
(n1)-component Wronskian
28Physical Difference between KdV and NLS
Long wave (e.g. Shallow water wave)
KdV equation
Short wave (e.g. Deep water wave)
NLS equation
Long wave
Short wave
Is there any physical phenomenon having both
long wave and short wave?
29Resonance Interaction between long wave and
short wave
Resonance Interaction
30Example Surface wave and internal wave
(Oikawa Funakoshi)
S
L
Yajima-Oikawa System (Long wave- short wave
resonance interaction eq.)
S Short wave L Long wave
31Long wave-short wave resonance interaction
History
- N. Yajima M. Oikawa(1976) Interaction of
langumuir waves with ion-acoustic waves in
plasma, Lax pair (3x3 matrix), Inverse Scattering
Transform, Bright soliton - D.J. Benney (1976) Water wave
- Y.C. Ma L.G. Redekopp (1979) Dark soliton
- V. K. Melnikov (1983) Extension to
multi-component and 2-dimensional case using Lax
pair - M. Oikawa, M. Funakoshi M. Okamura
2-dimensional system in stratified flow, Bright
and Dark soliton solutions - T. Kikuchi, T. Ikeda and S. Kakei (2003) Painleve
V equation - Nistazakis, Frantzeskakis, Kevrekidis, Malomed,
Carretero-Gonzakez (2007) Spinor BEC
322-dimensional 2-component Yajima-Oikawa
system (2-dimensional 2-component long
wave-short wave resonance interaction
equations) Melnikov On EQUATIONS FOR WAVE
INTERACTION, Lett. Math. Phys. 1983
Lax form
332-dimensional vector Yajima-Oikawa
System(2-component)
Vector form
34Bilinear Equations
c a constant, c0 Bright soliton
35Solution of 2-dimensional 2-component
Yajima-Oikawa system
- Belongs to 3-component KP hierarchy
- Theory of multi-component KP hierarchy (T. Date,
M. Jimbo, M. Kashiwara, T. Miwa 1981 V. Kac, J.
W. van de Leur 2003) - Bilinear identities of 3-component Wronskians
- 3-component Wronskian with constraints of reality
and complex conjugacy of complex functions
363-component Wronskian
3-component KP hierarchy
37(No Transcript)
38Short wave
Long wave
39(No Transcript)
40(No Transcript)
41S1
- L
S1
- L
Phase shift
S2
S2
42- L
S1
S2
43Interaction of 2-line soliton and periodic
soliton
V-shape
- L
S1
S2
442-dimensional vector Yajima-Oikawa
System(n-component)
tau-function N-component Wronskian
452D Matrix Yajima-Oikawa system
Multi-soliton (Wronskian) solution? BEC?
46(DKP hierarchy Jimbo-Miwa Hirota-Ohta
Kodama-KM)
Complex variables
Hietarinta
Physical interpretation, Multi-soliton
solution Vector and matrix generalization???
Multi-component Pfaffian?
47Summary
- We constructed Wronskian solutions of
2-dimensional vector YO system - Soliton interaction of vector YO system has some
unusual properties.
Future Problems
- Analysis of multi-soliton interaction
- Dark soliton? Dromion? Lump?
- Soliton interaction of matrix generalization?
Y. Ohta, KM, M. Oikawa J. Phys. A 40
7659-7672 (2007) KM, Y. Ohta, M. Oikawa, in
preparation