Title: Diapositive 1
1 Automation in ground Control Centre Introducing
UML behavior modeling
F. Jocteur Monrozier, E. Poupart (CNES) S. Saur,
D. Passaquay (THALES IS)
e-mail Francois.Jocteur-Monrozier_at_cnes.fr /
Erwann.poupart_at_cnes.fr
2Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Spacecraft monitoring control models
- example of operational scenarios
- Effort metrics
- Conclusion
3Objectives Cameleon RT Odisse Conclusion
- Evaluate CAMELEON platform in MC context
- Model-driven approach for Ground Control Centre
- Spacecraft MC
- In this study three ATV subsystems have
been modelized - Telecommands management (Elementary, Sequences,
Grouped, Interlocks, Time-based) (HLR document) - Integration of existing tools TM/TC kernel
(OCTAVE) - Validate with complex operational scenarios
-
- Assess this approach for future ground segments
in a multi-satellites context. -
- Effort 11 man/month, Period Oct. 04-April 05
4Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Odisse models
- example of operational scenarios
- Effort metrics
- Conclusion
5Objectives Cameleon RT Odisse Conclusion
- Target System modeling using a high level of
abstraction - information view (UML class diagrams) data
generation - dynamic view (UML state diagrams) code
generation - Integration Platform offering
- Integration mechanisms used to develop Software
Components providing distributed services - Functions extension development to provide
specialized services within Application server - Configurable MMI services
6Objectives Cameleon RT Odisse Conclusion
- Model use Code and Data generation
model parser
Information models(classinstances)
Code generator
CAMELEON Application server
Statechart models
Readable Textual notation
7Objectives Cameleon RT Odisse Conclusion
- CAMELEON Distributed Software components
Configurable/extensible MMI (Synowatch)
CAMELEON Application server
Integration software components
8Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Odisse models
- example of operational scenarios
- Effort metrics
- Conclusion
9Objectives Cameleon RT Odisse Conclusion
MMI TC Building followUp
MMI Monitoring Spacecraft System
CAMELEON server
Satellite/subsystems objects Telecommands
objects
Function Commanding
Odisse Architecture Software components
Supervision commanding logic
TC Sending
- XML trace
- CCSDS TC generation
10Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Odisse models
- example of operational scenarios
- Effort metrics
- Conclusion
11Objectives Cameleon RT Odisse Conclusion
- Spacecraft MC Models (Classes/instances)
- PWS (electrical subsystem),
- SGS (solar pannels subsystem),
- TCC (thermal control system),
CAMELEON server
Satellite/subsystems objects Telecommands
objects
Supervision commanding logic
TC Sending
TM receiving or consulting
- Telecommand Management Execution
- Telecommand model
- Telecommand Template model describe the
construction rules
- XML trace
- CCSDS TC generation
12Objectives Cameleon RT Odisse Conclusion
Modeling example Extract of PWS model
information
ATV Power Management System (PWS) Architecture
13Objectives Cameleon RT Odisse Conclusion
Modeling example PCDU behavior model
14Telecommand model
- Telecommand types
- Elementary,
- Interlocks,
- Time-based,
- Sequence, Group
- Pre/Post condition
- Parameter validation
15Objectives Cameleon RT Odisse Conclusion
Telecommand behavior model
- Elementary Telecommand state
- machine example
16Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Odisse models
- example of operational scenarios
- Effort metrics
- Conclusion
17- Automation Scenario overview
- Spacecraft objectsstate machineexecution
18Objectives Cameleon RT Odisse Conclusion
- Example of Automatic Power Management
scenario where automatons are synchronised with
each other - Each SolarPanel automaton depending on
day/night cycles interacts with PCDU automaton. - Each PCDU automaton computes power chain
energetic potential state and interacts with its
relative Battery automaton. - Each Battery automaton depending on charge
potential, total consumption of preceding orbit
and some other telemetry data transits into the
possible subgroup state. - On some of the previous transitions, Battery
automaton starts TC_xxx telecommands towards ATV
19Objectives Cameleon RT Odisse Conclusion
- Example of a complex Telecommand
INTERLOCKS_TCC_STBY_TO_FREEFLIGHT_MODE_1 GROUP_TC
C_AP_ONE_TCU_ONOFF_1 TCC_AP_ONE_TCU_ONOFF_1 TC
C_AP_ONE_TCU_ONOFF_2 TCC_AP_ONE_TCU_ONOFF_3 TC
C_AP_ONE_TCU_ONOFF_4 INTERLOCKS_TCC_AP_SWITCH_REG
_NREG_STEPX_1 TCC_AP_SWITCH_REG_NREG_STEP1_1 T
CC_AP_SWITCH_REG_NREG_STEP2_1 TCC_AP_SWITCH_REG_
NREG_STEP1_2 TCC_AP_SWITCH_REG_NREG_STEP2_2 TC
C_AP_SWITCH_REG_NREG_STEP1_3 TCC_AP_SWITCH_REG_N
REG_STEP2_3 TCC_AP_SWITCH_REG_NREG_STEP1_4 TCC
_AP_SWITCH_REG_NREG_STEP2_4 GROUP_TCC_EC_GRP_ONOF
F_1 TCC_EC_GRP_ONOFF_1 TCC_EC_GRP_ONOFF_2
TCC_EC_GRP_ONOFF_3 TCC_EC_GRP_ONOFF_4
TCC_EC_GRP_ONOFF_5 TCC_EC_GRP_ONOFF_6 INTER
LOCKS_TCC_UPDATE_CTL_SET_1 TCC_LLC_SELECT_SET_1
GROUP_TCC_CONFIG_AO1V1_1 TCC_LLC_CONFIG_AN_HE
ATER_A01V1_1 TCC_LLC_GRP_MAX_CURNT_1 GROUP_TCC
_LLC_THERM_ENADIS_1 TCC_LLC_THERM_ENADIS_
1 TCC_LLC_HEAT_CMD_RESU_1
. . .
20Top Multi-satellites view
Synthetic view of subsystems
Prototype MMIs (no development, just
configuration of Synowatch MMI)
PWS electrical chain view
Thermal Control Chain view
21Solar Arrays subsystem view
View of Telecommand Management
Chart view
22Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Odisse models
- example of operational scenarios
- Effort metrics
- Conclusion
23Objectives Cameleon RT Odisse Conclusion
Information modeling metrics
Traduction in textual notations (mof/dmtf)
24Objectives Cameleon RT Odisse Conclusion
Behavior / Code metrics
25Objectives Cameleon RT Odisse Conclusion
Configuration (Integration components Synowatch
MMI)
To use the TM/TC integration components, only XML
configuration files are necessary
26Contents
- Objectives / Context
- Cameleon platform overview
- Odisse study
- Architecture / Software components
- Spacecraft monitoring control models
- example of an operational scenario
- Effort metrics
- Conclusion
27Objectives Cameleon RT Odisse Conclusion
- Results of RT Odisse are encouraging
- it shows a generic productive approach thanks
to model use and supporting tools, -
- a highly configurable, evolutive and extensible
Core Advanced TM/TC functions has been
implemented (and integrated), - complex operational MC scenarios can be
implemented, - Automation is possible and can be useful to
provide a help for operators. - Improvments of CAMELEON platform has been also
identified (API, Diagnostic, Generator, )
28Thank you
29Objectives Cameleon RT Odisse Conclusion
Telecommand Template models
- Tecommand construction rules characteristics
- telecommand type,
- parameters type
- valuation mode,
- pre/post conditions
- critical mode
30Objectives Cameleon RT Odisse Conclusion
Example of ElementaryTelecommand with 2
post-conditions // Modèle PWS_LLC_KMIN2 instance
of CNES_ElementaryTelecommandTemplate AS
PWS_LLC_KMIN2 Name "PWS_LLC_KMIN2"
TcName "PWS_LLC_KMIN" FamillyName"BatterySup
ply" TcId "ATV01" TcRootName
"ATV_TC" Criticity false CevTimeOut
180000 PevTimeOut 180000 // Définition
des post-conditions // CEV 1 instance of
CNES_Condition AS STR1_EC_TEMP_VACUUM_CONDITION_1
Name "CONDITION_1" SystemName"STR1_EC_
TEMP_VACUUM" Condition "Atv1_STR1Temperat
ure lt 0" instance of CNES_CevConditionOfTeleco
mmandTemplate GroupComponent
STR1_EC_TEMP_VACUUM PartComponent
STR1_EC_TEMP_VACUUM_CONDITION_1 // CEV
2 instance of CNES_Condition AS
STR1_EC_TEMP_VACUUM_CONDITION_2 Name
"CONDITION_2" SystemName"STR1_EC_TEMP_VACUUM"
Condition "Atv1_STR1Temperature gt
-100" instance of CNES_CevConditionOfTelecomma
ndTemplate GroupComponent
STR1_EC_TEMP_VACUUM PartComponent
STR1_EC_TEMP_VACUUM_CONDITION_2