Title: Complex particle systems for biological and technical applications
1Complex particle systems for biological and
technical applications
- Petr Štepánek
- CestmÃr Konák
- Karel Ulbrich
- Institute of Macromolecular Chemistry
- Prague,CZ
2INSTITUTE OF MACROMOLECULAR CHEMISTRY ACADEMY OF
SCIENCES OF THE CZECH REPUBLIC
110 scientists, 55 students, 50 technicians
3Department of supramolecular polymer systems
- 4 DLS dynamic light scattering instruments
- SLS static light scattering
- zeta potential measurement
- birefringence (order-disorder transition)
- SAXS-WAXS - new Molmet instrument
- AFM dry and wet, small and large resolution
- ellipsometry
- GPC 5 detectors (RI, Mw, UV, viscosity,
evaporative) - MALDI-TOF
- EPR
4Research related to Biosons
- DNA/poly(Lysine) complexes, coated with pHPMA
- Polyamide nanoparticles coated with PEO
- Thermosensitive NIPAM particles stabilized by
surfactants - Diblock copolymer microemulsions
51. Coating of Polyelectrolyte Complexes
DNA/Poly(L-lysine) Complexes coated by covalent
attachment of PolyN-(2-hydroxypropyl)methacrylam
ide grafted with thiazolidine-2-thione (TT)
- delivery through the cell membrane
- targetting antibodies
- coating to prevent elimination from the blood
stream - semitelechelic or multivalent copolymer
6PolyN-(2-hydroxypropyl)methacrylamide grafted
with thiazolidine-2-thione (TT)
7Coating kinetics
Coating Polymer Structure Mw g mol-1 Mw/Mn Rh nm Reactive groups mol.
2 pHPMA-TT 45 200 1.72 6.5 7
- complexes unstable
- (fast addition of PLL)
- model system latex
8Size of complexes
DNA/PLL
Latex
9BIOSONS - We need latex with NH2 and COOH (
electroneutral)
102. Biodegradability of disulfide bonds
- Biodegradability of the disulfide bond with
glutathione is especially interesting for the
drug, protein or DNA delivery - Extracellular level of glutathione is much lower
than the intracellular level. - Stable systems during transport outside the cell,
disintegration after internalization in the
target cell.
11Glutathione L-?-glutamyl-L-cysteinyl
glycine
1,4-Dithio-DL-threitol (DTT)
S-S
HS
G
12Scheme of nanocoating - degradation
13Biodegradable nanocoatings
Latex coated with PolyN-(2-hydroxypropyl)methacry
lamide with thiazolidine-2-thione (TT)
14Poly(ethylene oxide)-coated Polyamide
Nanoparticles Degradable by Glutathione
Micelle-like nanoparticles
- polyamide-type core poly(adipoyl
chloride-alt-cystamine) - disulfide bonds in the main chain
- degradation products are fragments of low
molecular weight - shell poly(ethylene oxide) monomethyl ether
Mw 2000 and 5000
15Proposed mechanism of degradation
- irreversible chemical degradation of unimers (in
equilibrium with nanoparticles) with glutathione
into low-molecular-weight fragments - release of new unimers from particles
progressive dissolution
16Characteristics of micelle-like nanoparticles at
37 oC.
Sample Mw ? 10-7 Rh nm PDI ?m g cm-3 CAC ? 103 mg mL-1
SS2 2.44 44 ? 1 0.15 0.12 5.5
SS5 6.10 60 ? 2 0.16 0.11 7.5
Solution tlf / SS2 h tlf / SS5 h
Phosphate buffered saline 99 76
Phosphate buffered saline with oxidized glutathione (GSSG) 43 26
Phosphate buffered saline with reduced glutathione (GSH) 9.9 9.6
173. Thermosensitive NIPAM particles stabilized by
surfactants
PNIPA undergoes a coil-to-globule transition at
32 ?C
Preparation of nanoparticles by temperature jump
from 25 ?C to 40 ?C of a solution of PNIPA with a
surfactant (e.g., SDS)
18Results
The surfactant concentrations cSR ? 5 ? 10-4 g
mL-1 are not able to prevent intermolecular
aggregation hence, PNIPA aggregates form
well-defined nanoparticles.
Hysteresis due to kinetics of nanoparticle
dissolution
19Characteristics of nanoparticles at 40 oC M?
122 000, cPNIPA 5 x 10-4 and cSR 5 x 10-5 g
mL-1
Surfactant Mw g mol-1 Rg nm Rh nm ?Rh/Rh
SDS 1.28 x 107 17.7 24.6 0.17
CTAB 1.37 x 107 19.5 26.8 0.15
HDP 1.39 x 107 25.1 33.5 0.23
F68 4.2 x 108 62.9 83.9 0.07
B98 5.67 x 108 86.8 112 0.10
B97 8.55 x 108 116 136 0.09
204. Diblock Copolymer Microemulsions
copolymer A-B
solvent ? good for A, bad for B solvent ß good
for B, bad for A
N. Dan and M. Tirrell, Macromolecules 1993, 26,
637
21Experimental
A poly(octylstyrene) ? heptane (C7) B
poly(butyl methacrylayte) ß dimethylformamide
A-B
immiscible
Mw Mw/Mn fOS
OB3 23 k 1.04 0.49
OB5 35 k 1.19 0.61
polymer non soluble at room temperature
22Solvents miscible at elevated temperature ?
polymer soluble
Dynamic light scattering
heptane - DMF
OB5, c 3, fDMF 15
75.3 oC
23Hollow micelles OB5, c 5 , fDMF 15
9.4 nm
SAXS
q0
DMF
heptane
12.4 nm
aggregation number 62 DMF in
microemulsion 7 polymer in microemulsion
2.8 DMF missing 8
polymer missing 2.2
24Macrophase separation
v11 c22
25Small-angle neutron scatteringPS-PB 16-79, 10,
CX/ 10 DMF, 25oC
d
CX
? 0.66
best fit sphere R 16 nm
s 0.15
26Entangled hollow spheres PS-PB 16-79, 10, CX/
10 DMF, 25oC
24 nm
PB
PB
16 nm
PB
PB
PB
PB
73 nm
27The End
28Diblock copolymer with two isorefractive
immiscible solvents
cyclohexane CX dimethylformamide DMF TC 48.2
oC, wc 36 wt.
PS- PB(16-79) poly(styrene-butadiene) PS-
PEP(43-41) poly(styrene-Hisoprene)
29Viscosity of solutions, 5 polymer, 12 DMF,
T25oC
PS-PEP in CX/DMF
POS-PBuMA in C7/DMF liquid
t 0
viscosity 1 cP
viscosity 10 000 cP
30Microphase separation local structure
Order-disorder transition birfringence does not
work nCX 1.426 nDMF 1.430
CX
PEP
PS
DMF
PEP
d
CX
DMF
CX
31Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0
q0 0.008 A-1
?3
d 4?/?3q0 50 nm (never lamellar)
32Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0 0.008 A-1
d 4?/?3q0 70 nm
form factor cylinders R 14.9 nm ? 0.18
33Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0
q0 0.008 A-1
?3
d 4?/?3q0 52 nm
form factor cylinders R 14.9 nm ? 0.18
-1.52
- -1/m 0.66 R M?
- chains at the interface
- are only slightly extended
34Small-angle neutron scatteringPS-PB 16-79, 10,
CX/ 10 DMF, 25oC
d
CX
? 0.66
best fit sphere R 16 nm
s 0.15
35Entangled hollow spheres PS-PB 16-79, 10, CX/
10 DMF, 25oC
24 nm
PB
PB
16 nm
PB
fDMF 6.4
simple cubic
PB
PB
PB
crosslink PB
3 DMF missing
73 nm
36Ultra small-angle neutron scatteringPS-PEP
43-41, 3, CX/12DMF, 25oC
-4
37Ultra small-angle neutron scatteringPS-PEP
43-41, 3, CX/12DMF, 25oC
-4
fit with spherical objects grain size d 2.1 µm
SANS Saclay, F DCD at NRI in Rež, CZ DCD at GKSS,
Geesthacht, D ( detector at 5 km in pinhole
configuration)
interfacial signal from excess solvent
38The End
39Synthesized by polycondensation of cystamine
dihydrochloride with adipoyl chloride and
poly(ethylene oxide) monomethyl ether in the
presence of base and subsequent self-assembling
of the polymer in water.
40Surfactants Abbreviation CMC mM CMC mg mL-1 Mw g mol-1
Sodium dodecyl sulfat SDS 8.1 2.3 288.38
Cetyltrimethylammonium bromide CTAB 1.00 0.387 384.44
Cetylpyridinium chloride CPC 0.11 0.035 320.00
Pluronic F-68 F68 5.45 45.8 8 400
Polyoxoethylene(20) oleyl ether Brie 98, B98 lt0.025 1150
Polyoxoethylene(10) oleyl ether Brie 97, B97 lt0.025 709