Complex particle systems for biological and technical applications - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Complex particle systems for biological and technical applications

Description:

Department of supramolecular polymer systems. 4 DLS dynamic light ... multivalent copolymer. delivery through the cell membrane ... multivalent ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 41
Provided by: petrst7
Category:

less

Transcript and Presenter's Notes

Title: Complex particle systems for biological and technical applications


1
Complex particle systems for biological and
technical applications
  • Petr Å tepánek
  • Cestmír Konák
  • Karel Ulbrich
  • Institute of Macromolecular Chemistry
  • Prague,CZ

2
INSTITUTE OF MACROMOLECULAR CHEMISTRY ACADEMY OF
SCIENCES OF THE CZECH REPUBLIC
110 scientists, 55 students, 50 technicians
3
Department of supramolecular polymer systems
  • 4 DLS dynamic light scattering instruments
  • SLS static light scattering
  • zeta potential measurement
  • birefringence (order-disorder transition)
  • SAXS-WAXS - new Molmet instrument
  • AFM dry and wet, small and large resolution
  • ellipsometry
  • GPC 5 detectors (RI, Mw, UV, viscosity,
    evaporative)
  • MALDI-TOF
  • EPR

4
Research related to Biosons
  1. DNA/poly(Lysine) complexes, coated with pHPMA
  2. Polyamide nanoparticles coated with PEO
  3. Thermosensitive NIPAM particles stabilized by
    surfactants
  4. Diblock copolymer microemulsions

5
1. Coating of Polyelectrolyte Complexes
DNA/Poly(L-lysine) Complexes coated by covalent
attachment of PolyN-(2-hydroxypropyl)methacrylam
ide grafted with thiazolidine-2-thione (TT)
  • delivery through the cell membrane
  • targetting antibodies
  • coating to prevent elimination from the blood
    stream
  • semitelechelic or multivalent copolymer

6
PolyN-(2-hydroxypropyl)methacrylamide grafted
with thiazolidine-2-thione (TT)
7
Coating kinetics
Coating Polymer Structure Mw g mol-1 Mw/Mn Rh nm Reactive groups mol.
2 pHPMA-TT 45 200 1.72 6.5 7
  • complexes unstable
  • (fast addition of PLL)
  • model system latex

8
Size of complexes
DNA/PLL
Latex
9
BIOSONS - We need latex with NH2 and COOH (
electroneutral)
10
2. Biodegradability of disulfide bonds
  • Biodegradability of the disulfide bond with
    glutathione is especially interesting for the
    drug, protein or DNA delivery
  • Extracellular level of glutathione is much lower
    than the intracellular level.
  • Stable systems during transport outside the cell,
    disintegration after internalization in the
    target cell.

11
Glutathione L-?-glutamyl-L-cysteinyl
glycine
1,4-Dithio-DL-threitol (DTT)

S-S
HS
G
12
Scheme of nanocoating - degradation
13
Biodegradable nanocoatings
Latex coated with PolyN-(2-hydroxypropyl)methacry
lamide with thiazolidine-2-thione (TT)
14
Poly(ethylene oxide)-coated Polyamide
Nanoparticles Degradable by Glutathione
Micelle-like nanoparticles
  • polyamide-type core poly(adipoyl
    chloride-alt-cystamine)
  • disulfide bonds in the main chain
  • degradation products are fragments of low
    molecular weight
  • shell poly(ethylene oxide) monomethyl ether
    Mw 2000 and 5000

15
Proposed mechanism of degradation
  • irreversible chemical degradation of unimers (in
    equilibrium with nanoparticles) with glutathione
    into low-molecular-weight fragments
  • release of new unimers from particles
    progressive dissolution

16
Characteristics of micelle-like nanoparticles at
37 oC.
Sample Mw ? 10-7 Rh nm PDI ?m g cm-3 CAC ? 103 mg mL-1
SS2 2.44 44 ? 1 0.15 0.12 5.5
SS5 6.10 60 ? 2 0.16 0.11 7.5
Solution tlf / SS2 h tlf / SS5 h
Phosphate buffered saline 99 76
Phosphate buffered saline with oxidized glutathione (GSSG) 43 26
Phosphate buffered saline with reduced glutathione (GSH) 9.9 9.6
17
3. Thermosensitive NIPAM particles stabilized by
surfactants
PNIPA undergoes a coil-to-globule transition at
32 ?C
Preparation of nanoparticles by temperature jump
from 25 ?C to 40 ?C of a solution of PNIPA with a
surfactant (e.g., SDS)
18
Results
The surfactant concentrations cSR ? 5 ? 10-4 g
mL-1 are not able to prevent intermolecular
aggregation hence, PNIPA aggregates form
well-defined nanoparticles.
Hysteresis due to kinetics of nanoparticle
dissolution
19
Characteristics of nanoparticles at 40 oC M?
122 000, cPNIPA 5 x 10-4 and cSR 5 x 10-5 g
mL-1
Surfactant Mw g mol-1 Rg nm Rh nm ?Rh/Rh
SDS 1.28 x 107 17.7 24.6 0.17
CTAB 1.37 x 107 19.5 26.8 0.15
HDP 1.39 x 107 25.1 33.5 0.23
F68 4.2 x 108 62.9 83.9 0.07
B98 5.67 x 108 86.8 112 0.10
B97 8.55 x 108 116 136 0.09
20
4. Diblock Copolymer Microemulsions
copolymer A-B
solvent ? good for A, bad for B solvent ß good
for B, bad for A
N. Dan and M. Tirrell, Macromolecules 1993, 26,
637
21
Experimental
A poly(octylstyrene) ? heptane (C7) B
poly(butyl methacrylayte) ß dimethylformamide
A-B
immiscible
Mw Mw/Mn fOS
OB3 23 k 1.04 0.49
OB5 35 k 1.19 0.61
polymer non soluble at room temperature
22
Solvents miscible at elevated temperature ?
polymer soluble
Dynamic light scattering
heptane - DMF
OB5, c 3, fDMF 15
75.3 oC
23
Hollow micelles OB5, c 5 , fDMF 15
9.4 nm
SAXS
q0
DMF
heptane
12.4 nm
aggregation number 62 DMF in
microemulsion 7 polymer in microemulsion
2.8 DMF missing 8
polymer missing 2.2
24
Macrophase separation
v11 c22
25
Small-angle neutron scatteringPS-PB 16-79, 10,
CX/ 10 DMF, 25oC
d
CX
? 0.66
best fit sphere R 16 nm
s 0.15
26
Entangled hollow spheres PS-PB 16-79, 10, CX/
10 DMF, 25oC
24 nm
PB
PB
16 nm
PB
PB
PB
PB
73 nm
27
The End
28
Diblock copolymer with two isorefractive
immiscible solvents
cyclohexane CX dimethylformamide DMF TC 48.2
oC, wc 36 wt.
PS- PB(16-79) poly(styrene-butadiene) PS-
PEP(43-41) poly(styrene-Hisoprene)
29
Viscosity of solutions, 5 polymer, 12 DMF,
T25oC
PS-PEP in CX/DMF
POS-PBuMA in C7/DMF liquid
t 0
viscosity 1 cP
viscosity 10 000 cP
30
Microphase separation local structure
Order-disorder transition birfringence does not
work nCX 1.426 nDMF 1.430
CX
PEP
PS
DMF
PEP
d
CX
DMF
CX
31
Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0
q0 0.008 A-1
?3
d 4?/?3q0 50 nm (never lamellar)
32
Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0 0.008 A-1
d 4?/?3q0 70 nm
form factor cylinders R 14.9 nm ? 0.18
33
Small-angle neutron scatteringPS-PEP 43-41, 3,
CX/12DMF, 25oC
q0
q0 0.008 A-1
?3
d 4?/?3q0 52 nm
form factor cylinders R 14.9 nm ? 0.18
-1.52
  • -1/m 0.66 R M?
  • chains at the interface
  • are only slightly extended

34
Small-angle neutron scatteringPS-PB 16-79, 10,
CX/ 10 DMF, 25oC
d
CX
? 0.66
best fit sphere R 16 nm
s 0.15
35
Entangled hollow spheres PS-PB 16-79, 10, CX/
10 DMF, 25oC
24 nm
PB
PB
16 nm
PB
fDMF 6.4
simple cubic
PB
PB
PB
crosslink PB
3 DMF missing
73 nm
36
Ultra small-angle neutron scatteringPS-PEP
43-41, 3, CX/12DMF, 25oC
-4
37
Ultra small-angle neutron scatteringPS-PEP
43-41, 3, CX/12DMF, 25oC
-4
fit with spherical objects grain size d 2.1 µm
SANS Saclay, F DCD at NRI in Rež, CZ DCD at GKSS,
Geesthacht, D ( detector at 5 km in pinhole
configuration)
interfacial signal from excess solvent
38
The End
39
Synthesized by polycondensation of cystamine
dihydrochloride with adipoyl chloride and
poly(ethylene oxide) monomethyl ether in the
presence of base and subsequent self-assembling
of the polymer in water.
40
Surfactants Abbreviation CMC mM CMC mg mL-1 Mw g mol-1
Sodium dodecyl sulfat SDS 8.1 2.3 288.38
Cetyltrimethylammonium bromide CTAB 1.00 0.387 384.44
Cetylpyridinium chloride CPC 0.11 0.035 320.00
Pluronic F-68 F68 5.45 45.8 8 400
Polyoxoethylene(20) oleyl ether Brie 98, B98 lt0.025 1150
Polyoxoethylene(10) oleyl ether Brie 97, B97 lt0.025 709
Write a Comment
User Comments (0)
About PowerShow.com