Title: 1.%20Coupled%20dimer%20antiferromagnets
1(No Transcript)
2(No Transcript)
3Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
4Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
5TlCuCl3
6TlCuCl3
An insulator whose spin susceptibility vanishes
exponentially as the temperature T tends to zero.
7Square lattice antiferromagnet
Ground state has long-range Néel order
8Square lattice antiferromagnet
J
J/
Weaken some bonds to induce spin entanglement in
a new quantum phase
9Square lattice antiferromagnet
J
J/
Ground state is a quantum paramagnet with spins
locked in valence bond singlets
10Pressure in TlCuCl3
11Quantum critical point with non-local
entanglement in spin wavefunction
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17TlCuCl3 at ambient pressure
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer,
H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev.
B 63 172414 (2001).
18TlCuCl3 at ambient pressure
Sharp spin 1 particle excitation above an energy
gap (spin gap)
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer,
H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev.
B 63 172414 (2001).
19(No Transcript)
20Spin waves
21Spin waves
22CFT3
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Spin waves
30Spin waves
31(No Transcript)
32(No Transcript)
33TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
34Prediction of quantum field theory
35Prediction of quantum field theory
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
36(No Transcript)
37(No Transcript)
38Classical dynamics of spin waves
39Classical Boltzmann equation for S1 particles
40CFT3 at Tgt0
41Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
42Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
43 Graphene
44(No Transcript)
45 Quantum phase transition in graphene tuned by a
bias voltage
Electron Fermi surface
46 Quantum phase transition in graphene tuned by a
bias voltage
Electron Fermi surface
Hole Fermi surface
47 Quantum phase transition in graphene tuned by a
bias voltage
There must be an intermediate quantum critical
point where the Fermi surfaces reduce to a Dirac
point
Electron Fermi surface
Hole Fermi surface
48 Quantum critical graphene
49 Quantum phase transition in graphene
Quantum critical
50Quantum critical transport
S. Sachdev, Quantum Phase Transitions, Cambridge
(1999).
51Quantum critical transport
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
52Quantum critical transport
P. Kovtun, D. T. Son, and A. Starinets, Phys.
Rev. Lett. 94, 11601 (2005) , 8714 (1997).
53Quantum critical transport in graphene
L. Fritz, J. Schmalian, M. Müller and S. Sachdev,
Physical Review B 78, 085416 (2008) M.
Müller, J. Schmalian, and L. Fritz, Physical
Review Letters 103, 025301 (2009)
54Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
55Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
quantum compressible liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
56AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Maldacena, Gubser, Klebanov, Polyakov, Witten
57AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
A 21 dimensional system at its quantum critical
point
Maldacena, Gubser, Klebanov, Polyakov, Witten
58AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole temperature temperature of quantum
criticality
Maldacena, Gubser, Klebanov, Polyakov, Witten
59AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Black hole entropy entropy of quantum
criticality
Strominger, Vafa
60AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Quantum critical dynamics waves in curved space
Maldacena, Gubser, Klebanov, Polyakov, Witten
61AdS/CFT correspondence
The quantum theory of a black hole in a
31-dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory
of a quantum critical point) in 21 dimensions
31 dimensional AdS space
Quantum criticality in 21 dimensions
Friction of quantum criticality waves falling
into black hole
Kovtun, Policastro, Son
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73Magnetohydrodynamics of quantum criticality
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
74Magnetohydrodynamics of quantum criticality
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
75Magnetohydrodynamics of quantum criticality
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
76Magnetohydrodynamics of quantum criticality
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, Phys. Rev. B 76 144502 (2007)
77Greens function of a fermion
Sung-Sik Lee, arXiv0809.3402 M. Cubrovic, J.
Zaanen, and K. Schalm, arXiv0904.1993
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh,
arXiv0907.2694
78Greens function of a fermion
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh,
arXiv0907.2694
Similar to non-Fermi liquid theories of Fermi
surfaces coupled to gauge fields, and at quantum
critical points
79Free energy from gravity theory
F. Denef, S. Hartnoll, and S. Sachdev,
arXiv0908.1788
80Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
81Outline
1. Coupled dimer antiferromagnets
Order parameters and Landau-Ginzburg
criticality 2. Graphene Topological
Fermi surface transitions 3. Quantum
criticality and black holes AdS4 theory of
compressible quantum liquids 4. Quantum
criticality in the cuprates Global phase
diagram and the spin density wave transition in
metals
82(No Transcript)
83(No Transcript)
84The cuprate superconductors
Multiple quantum phase transitions involving at
least two order parameters (antiferromagnetism
and superconductivity) and a topological change
in the Fermi surface
85Crossovers in transport properties of hole-doped
cuprates
N. E. Hussey, J. Phys Condens. Matter 20,
123201 (2008)
86(No Transcript)
87(No Transcript)
88Only candidate quantum critical point observed at
low T
Strange metal
89(No Transcript)
90Theory of quantum criticality in the cuprates
R. Daou et al., Nature Physics 5, 31 - 34 (2009)
91Spin density wave theory in hole-doped cuprates
Hole pockets
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
92Theory of quantum criticality in the cuprates
R. Daou et al., Nature Physics 5, 31 - 34 (2009)
93Theory of quantum criticality in the cuprates
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102(No Transcript)
103E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk,
P. K. Mang, and M. Greven,Nature 445, 186 (2007).
104(No Transcript)
105Conclusions
General theory of finite temperature dynamics
and transport near quantum critical points, with
applications to antiferromagnets, graphene, and
superconductors
106Conclusions
The AdS/CFT offers promise in providing a new
understanding of strongly interacting quantum
matter at non-zero density
107Conclusions
Identified quantum criticality in cuprate
superconductors with a critical point at optimal
doping associated with onset of spin density wave
order in a metal
Elusive optimal doping quantum critical point has
been hiding in plain sight. It is shifted to
lower doping by the onset of superconductivity