Title: Elements of Statistical Learning Hastie, Tibshirani, Friedman
1Elements of Statistical LearningHastie,
Tibshirani, Friedman
2Projection Pursuit Regression
Approximate
with
unspecified functions
unit p-vectors
Minimize
3Ridge function
varies in one direction only
4Fitting PPR
- Given construct (e.g. with splines)
- Given minimize E over (Gauss Newton)
5Fitting PPR
do
- Given construct (e.g. with splines)
- Given minimize E over (Gauss Newton)
until convergence
6Fitting PPR
for m 1 M
do
- Given construct (e.g. with splines)
- Given minimize E over (Gauss Newton)
until convergence
add to f
7 Artificial Neural Networks
SVM ICA
8Multilogit model
9Multilogit models with bias
1
a0m
X1
a1m
a2m
X2
Zm
apm
Xp
10Sum of multilogit models
1
1
aij
X1
b0
Z1
b1
X2
b2
Z2
T
bM
ZM
Xp
11Multilayer Perceptron
1
1
aij
X1
b0
Z1
b1
X2
b2
Z2
Y
bM
ZM
Xp
12Multilayer Perceptron
1
1
apm
bmk
X1
or
Y1
Z1
X2
Z2
Y2
or
ZM
YK
Xp
13PPR vs MLP
where
14Fitting MLP
With training samples
Fit parameters
To minize error criterion
15Back - propagation
1
1
apm
bmk
X1
Y1
Z1
Gradient descent update
X2
Z2
Y2
ZM
YK
Xp
Gradient expression
16 1
Back - propagation
1
apm
bmk
X1
Y1
Z1
Gradient descent update
X2
Z2
Y2
ZM
YK
Xp
Gradient expression
17Improvements
- Conjugate gradient
- Momentum
- Variable metric
- Levenberg Marquardt
if has been positive
for a while
First order development
and exact resolution
18Starting values
is roughly linear when is small
Begin linear then evolve nonlinear
19Avoiding overfitting
- Early stopping
- Penalization
Error
Stop before getting to global minimum
validation
training
Nb epochs
Error function
20Avoiding overfitting
- Build several models Mi
- and use validation set
- Pruning
- Using validation set
- AIC, BIC criteria
1
1
apm
bmk
X1
Y1
Z1
X2
Z2
Y2
ZM
YK
Xp
21Other Issues
- Scaling of the inputs
- Number of hidden units and layers
- Multiple minima
22Radial Basis Function Networks
Output
with
Hidden layer
. . .
Inputs
Three parameters ci, si, lj
23Fitting RBFN
ci Vector quantization
si Estimation of variance around ci
li Linear regression
24Applications
25Handwritten digit
Number
26(No Transcript)
27Optic nerve stimuliVisual sensations
MLP
Neuro-physiological Process
?
noise
28Absorbance spectrum of juiceSugar concentration
RBFN
Sugar concentration
Nonlinear modeling
Spectra