UK Participation in the LHCb Experiment - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

UK Participation in the LHCb Experiment

Description:

25 stations, mounted in 'toblerone' RF shields. 220 k channels. 9.5 hits/ track ... Toblerone RF shield. Coseners 2 11. 2000. PPC meeting. 27. VELO R&D Tests ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 34
Provided by: franz154
Category:

less

Transcript and Presenter's Notes

Title: UK Participation in the LHCb Experiment


1
UK Participation in the LHCb Experiment
  • Motivation
  • Experiment
  • RICH
  • Vertex Detector
  • UK Role
  • Conclusions

PPC meeting Coseners 2. 11. 2000
Franz Muheim University of Edinburgh
2
UK Institutes
LOI
TP
University of Edinburgh 1999
University of Glasgow LOI
Imperial College LOI
Rutherford Appleton Laboratory 1999
University of Bristol 2000
University of Oxford LOI
3
Introduction
  • CPV only observed in neutral kaon system
  • theoretical uncertainties
  • Standard Model
  • 3 generation CKM matrix allows for CPV
  • predicts large CPV asymmetries for B mesons
  • No real understanding
  • Baryogenesis additional source of CPV needed
  • why is strong CPV small?
  • New physics around the corner?

UnitarityTriangles
4
in B Meson System
  • Standard Model makes accurate predictions
  • precision tests of CKM elements and CPV
    phases, of the 3 sides and 3 angles need to
    measure 5 directly
  • CPV predicted in many decays
  • consistency checks
  • need larges samples of Bd, Bu, Bs, Bc
    mesons
  • Ideal to search for new physics
  • Can extract parameters of SM and new physics

5
Large Hadron Collider
  • By 2005 BABAR, BELLE, CLEO-III, CDF, D0, HERA-B
  • 1st test of CKM matrix , 3 sides vs sin 2b
  • LHCb is a 2nd generation experiment
  • precision measurements of CP overconstrain CKM
    elements
  • large statistics, Bs mesons
  • LHC is the most intensive source of B mesons
    (Bd, Bu, Bs, Bc)
  • ?bb 500 ?b ?inelastic 80 mb
  • Luminosity ltLgtLHCb 2 x1032 cm-2 s-1 ltLgtLHC
    1034 cm-2 s-1
  • 1012 bb / 107 s

LHC
6
LHCb Experiment
  • LHCb Detector
  • forward single arm spectrometer
  • Challenges
  • Trigger leptonic and hadronic final states
    (eg Bd -gt pp)
  • Particle Identification ?-K separation 1
    GeV lt p lt 150 GeV
  • Vertexing proper time resolution 43 fs Bs -gt
    Dsp(K) 30 fs Bs -gt J/y f

bb angular production
7
LHCb Experiment
  • Acceptance 10 - 300 (250) mrad
    (non)-bending plane
  • Open geometry easy access

Vertex
RICH1
RICH2
8
Particle Identification
Momentum vs polar angle
Momentum
  • Requires RICH system with 3 radiators
  • RICH system divided into 2 detectors
  • Excellent charged particle Identification
    required from 1 - 150 GeV/c

9
RICH System Overview
Ring Imaging Cherenkov Detectors
RICH1
RICH2
  • Acceptance
  • 300 mrad RICH 1
  • 120 mrad RICH 2
  • Radiators thickness L, refractive index n, angle
    ?, ?/K threshold
  • Aerogel C4F10 CF4
  • 5 85 167 cm
  • 1.03 1.0014 1.0005
  • 242 53 32 mrad
  • 0.6 2.6 4.4 GeV
  • 2.0 9.3 15.6 GeV

Photo detectors
10
Photo Detectors
Aerogel large rings
C4F10 small rings
  • Photo detector area 2.6 m2
  • Single photon sensitivity 200 - 600 nm, quantum
    efficiency gt 20
  • Good granularity 2.5 x 2.5 mm2
  • Large active area fraction ? 73
  • LHC speed read-out electronics 40 MHz
  • LHCb environment magnetic fields, charged
    particles
  • Photodetector choice 12/99
  • Pixel HPD is baseline, MaPMT is backup

CF4
HPD or MAPMT
11
Hybrid Photo Diodes
Pixel HPD (baseline)
  • Quartz window, thin S20 photo cathode ?QE dE
    0.77 eV
  • 32 x 32 Si pixel array 500 ?m
  • Cross-focusing optics
  • demagnification 5
  • 50 ?m point-spread function
  • 20 kV operating voltage
  • Encapsulated binary electronics
  • Tube, encapsulation industry
  • Pixel sensor

-20 kV
61 pixel HPD
  • Existing prototype external read-out

? 80 mm
12
HPD RD Results
  • Simultaneous detection of Cherenkov rings from
    aerogel and C4F10 radiators

RICH 1 1/4-scale prototype
13
HPD RD Results II
Testbeam
  • Testbeam Setup
  • RICH 1 prototype
  • 3 HPDs
  • Figure of merit
  • N0 ? 202 cm-1

LED
Spectrum
14
HPD Electronics
Pixel chip
Occupancy 3 RICH 1 lt 1 RICH 2
  • ALICE / LHCb
  • pixel size 50 ?m x 425 ?m
  • 8 pixels 1 LHCb unit
  • 40 MHz read-out clock
  • tests are currently ongoing
  • Bump bonding chip-sensor

50 mm
15
MAPMT (backup)
Multianode Photo Multiplier Tube
  • 8x8 dynode chains, pixel 2x2 mm2
  • Gain 3.105 at 800 V
  • UV glass window Bialkali photo cathode,
    QE 22 at ? 380 nm
  • MAPMT active area fraction 38 (includes
    pixel gap)
  • Increase with quartz lens with one flat and one
    curved surface to 85

16
MAPMT RD Results
3x3 Cluster Test
  • Beam test
  • RICH 1 Prototype
  • CF4 _at_ 700 mbar
  • 40 MHz Read-out APVm chip
  • Observe in data 6.51 ? 0.34 p.e.
  • Expect from simulation 6.21 p.e.

17
RICH Performance
  • Simulation
  • based on measured test beam HPD data
  • global pattern recognition
  • background photons included
  • of detected photons
  • 7 Aerogel 33 C4F10 18 CF4
  • Angular resolution mrad
  • 2.00 Aerogel 1.45 C4F10 0.58 CF4

?-K separation
18
Bd -gt ?? ?
  • sensitive to CKM angle ?
  • Adir and Amix depend also on P/T and strong
    phase ?
  • ?? 20 - 50 in 1 year
  • ? dependent
  • if P/T from elsewhere
  • Backgrounds have

Tree T
Penguin P
19
Bs -gt Ds?K?
  • Both diagrams of O(?3)
  • expect large
  • Rate asymmetries measure angle g-2dg
  • Expect 2400 events in 1 year of data taking
  • s(g-2dg) 60 .. 140

20
RICH Construction
Photo detectors
RICH 1
Beam-pipe
14 X0
Kapton beam-pipe seal
Mirrors
21
RICH Construction II
RICH 2
12.4 X0
Finite Element Analysis Static deflections Natural
frequencies
Mirrors
Side view
Top view
Photo detectors
22
RICH Electronics
  • Pixel chip
  • encapsulated, binary, 40 MHz, 321 MUX
  • Level 0
  • on detector
  • Gbit optical links
  • clocks, triggers - TTC
  • Level 1
  • in counting room
  • buffers data L1 latency, transports to DAQ
  • zero suppression
  • TTC, DCS interface

23
Technical Design Report
Division of responsibilities
  • Submitted 7.9.2000
  • other institutes
  • CERN
  • Genova, Milano

24
RICH Project Schedule
25
Vertex Detector
VErtex LOcator Design
  • Si strip detectors p-n, n-n, single sided,
    double metal read-out 220 ?m thick, 1800 wedges
  • Optimized for Level 1 trigger (L1)
  • Alternate r and phi strip detectors varying strip
    pitch 20 - 40 ?m in r
  • Detector halves retracted by ? 30 mm
    in y during injection
  • 8 mm from beam during physics
  • Radiation damage
  • may replace detectors after a few years

Si detectors
Si Strip Layout radial phi
26
VELO Design
Optimisation
Toblerone RF shield
  • Use Liverpool MAP farm (300 Linux PCs)
  • 3.5 Million events
  • optimize of stations, positions, outer inner
    radii
  • 25 stations, mounted in toblerone RF shields
  • 220 k channels
  • 9.5 hits/ track
  • Proper time resolution
  • st 43 fs Bs -gt Dsp
  • sensitive up to xs 75 (1 year)

27
VELO RD Tests
Testbeam
Setup 200 mm p-n Micron
  • irradiated prototypes
  • cluster finding efficiency
  • resolution
  • signal shape
  • Analogue read-out
  • Front-end chip design
  • sub micron - BEETLE
  • DMILL - SCTA128_VELO

28
VELO Summary
  • Geometry
  • smallest pitch where most important for impact
    parameter resolution, at inner radius pixels
    of 20 x 6300 ?m2
  • optimum for L1 trigger
  • constant occupancy lt 5 x 10-3
  • Thin detectors
  • read out at outer rim
  • minimize multiple scattering
  • S/N 15 sufficient for L1 trigger
  • Number of readout channels
  • 220 k reflects in cost
  • Technical Design Report expected by April 2001
  • UK responsibilities
  • Silicon detectors, hybrids, and assembly

29
UK Costs
30
Conclusions
  • LHCb is progressing rapidly since Technical
    Proposal
  • Major technology choices made, e.g. pixel
    HPD baseline for RICH photo detectors
  • Technical Design Reports
  • Magnet approved,
  • RICH ECAL submitted
  • other subsystems on track
  • UK groups have large responsibilities for
  • RICH
  • Vertex detector
  • Software / Computing
  • Construction starts soon

31
New Methods
  • New strategies for measuring CKM angles - direct
  • combine Bd -gt ??K - charged and neutral B to
    extract g
  • ?? 20 - 70 ambiguous solutions
  • combine Bs -gtKK and Bd -gt ??
  • ?? 40 ?? known, U-spin
  • LHCb RICH at its best
  • combine Bd,s -gtDd,s D-d,s
  • O(100k) events per year
  • ?? a few 0
  • Overconstrain CP angles a, b, g, and dg

32
Rare Decays
  • Bs -gt mm-
  • Standard Model branching ratio 3.7 x
    10-9 ideal to search for new physics - FCNC
  • Expected signal (bkgd) 11 (3.3) 1 year
  • Bd -gt Kmm-
  • Standard Model branching ratio 1.5 x
    10-6 dimuon mass spectrum, forward-backward
    asymmetry
  • combine with Bd -gt r mm- Vts/Vtd
  • Expected signal (bkgd) 22400 (1400) 1 year
  • Bd -gt Kg
  • Standard Model branching ratio 5 x
    10-5 search for new physics in CPV
    asymmetry O(1) in SM
  • Expected signal 26000 1 year

33
LHCb CP Sensitivities
Parameter Channels Evts/year ?(1
year) LHCb feature 2(??) Bd??? 4900 ?P/T
0 2?-5? PID, hadron trigger Bd?r? 1300 3?-6?
PID, hadron trigger 2?? Bd ? D? 340000 gt
11? PID, hadron trigger ? Bd?J/?Ks 37000 0.6?
?-2?? Bs ?DsK 2400 6?-14? PID, hadron
trigger, ?t ? Bd ? DK 400 10? PID, hadron
trigger ?? Bs ? J/yf 44000 0.6? ?t Bs
oscillations xs Bs ? Ds? 120000 up to 75 hadron
trigger, ?t Rare Decays BR Bs ?
?? lt2?10-9 ?t Bd ? K mm 22400 PID
Write a Comment
User Comments (0)
About PowerShow.com