Title: UK Participation in the LHCb Experiment
1 UK Participation in the LHCb Experiment
- Motivation
- Experiment
- RICH
- Vertex Detector
- UK Role
- Conclusions
PPC meeting Coseners 2. 11. 2000
Franz Muheim University of Edinburgh
2 UK Institutes
LOI
TP
University of Edinburgh 1999
University of Glasgow LOI
Imperial College LOI
Rutherford Appleton Laboratory 1999
University of Bristol 2000
University of Oxford LOI
3Introduction
- CPV only observed in neutral kaon system
- theoretical uncertainties
- Standard Model
- 3 generation CKM matrix allows for CPV
- predicts large CPV asymmetries for B mesons
- No real understanding
- Baryogenesis additional source of CPV needed
- why is strong CPV small?
- New physics around the corner?
UnitarityTriangles
4 in B Meson System
- Standard Model makes accurate predictions
- precision tests of CKM elements and CPV
phases, of the 3 sides and 3 angles need to
measure 5 directly - CPV predicted in many decays
- consistency checks
- need larges samples of Bd, Bu, Bs, Bc
mesons - Ideal to search for new physics
- Can extract parameters of SM and new physics
5Large Hadron Collider
- By 2005 BABAR, BELLE, CLEO-III, CDF, D0, HERA-B
- 1st test of CKM matrix , 3 sides vs sin 2b
- LHCb is a 2nd generation experiment
- precision measurements of CP overconstrain CKM
elements - large statistics, Bs mesons
- LHC is the most intensive source of B mesons
(Bd, Bu, Bs, Bc) - ?bb 500 ?b ?inelastic 80 mb
- Luminosity ltLgtLHCb 2 x1032 cm-2 s-1 ltLgtLHC
1034 cm-2 s-1 - 1012 bb / 107 s
LHC
6LHCb Experiment
- LHCb Detector
- forward single arm spectrometer
- Challenges
- Trigger leptonic and hadronic final states
(eg Bd -gt pp) - Particle Identification ?-K separation 1
GeV lt p lt 150 GeV - Vertexing proper time resolution 43 fs Bs -gt
Dsp(K) 30 fs Bs -gt J/y f
bb angular production
7LHCb Experiment
- Acceptance 10 - 300 (250) mrad
(non)-bending plane - Open geometry easy access
Vertex
RICH1
RICH2
8Particle Identification
Momentum vs polar angle
Momentum
- Requires RICH system with 3 radiators
- RICH system divided into 2 detectors
- Excellent charged particle Identification
required from 1 - 150 GeV/c
9RICH System Overview
Ring Imaging Cherenkov Detectors
RICH1
RICH2
- Acceptance
- 300 mrad RICH 1
- 120 mrad RICH 2
- Radiators thickness L, refractive index n, angle
?, ?/K threshold - Aerogel C4F10 CF4
- 5 85 167 cm
- 1.03 1.0014 1.0005
- 242 53 32 mrad
- 0.6 2.6 4.4 GeV
- 2.0 9.3 15.6 GeV
Photo detectors
10 Photo Detectors
Aerogel large rings
C4F10 small rings
- Photo detector area 2.6 m2
- Single photon sensitivity 200 - 600 nm, quantum
efficiency gt 20 - Good granularity 2.5 x 2.5 mm2
- Large active area fraction ? 73
- LHC speed read-out electronics 40 MHz
- LHCb environment magnetic fields, charged
particles - Photodetector choice 12/99
- Pixel HPD is baseline, MaPMT is backup
CF4
HPD or MAPMT
11Hybrid Photo Diodes
Pixel HPD (baseline)
- Quartz window, thin S20 photo cathode ?QE dE
0.77 eV - 32 x 32 Si pixel array 500 ?m
- Cross-focusing optics
- demagnification 5
- 50 ?m point-spread function
- 20 kV operating voltage
- Encapsulated binary electronics
- Tube, encapsulation industry
- Pixel sensor
-20 kV
61 pixel HPD
- Existing prototype external read-out
? 80 mm
12HPD RD Results
- Simultaneous detection of Cherenkov rings from
aerogel and C4F10 radiators
RICH 1 1/4-scale prototype
13HPD RD Results II
Testbeam
- Testbeam Setup
- RICH 1 prototype
- 3 HPDs
- Figure of merit
- N0 ? 202 cm-1
LED
Spectrum
14HPD Electronics
Pixel chip
Occupancy 3 RICH 1 lt 1 RICH 2
- ALICE / LHCb
- pixel size 50 ?m x 425 ?m
- 8 pixels 1 LHCb unit
- 40 MHz read-out clock
- tests are currently ongoing
- Bump bonding chip-sensor
50 mm
15MAPMT (backup)
Multianode Photo Multiplier Tube
- 8x8 dynode chains, pixel 2x2 mm2
- Gain 3.105 at 800 V
- UV glass window Bialkali photo cathode,
QE 22 at ? 380 nm
- MAPMT active area fraction 38 (includes
pixel gap) - Increase with quartz lens with one flat and one
curved surface to 85
16MAPMT RD Results
3x3 Cluster Test
- Beam test
- RICH 1 Prototype
- CF4 _at_ 700 mbar
- 40 MHz Read-out APVm chip
- Observe in data 6.51 ? 0.34 p.e.
- Expect from simulation 6.21 p.e.
17RICH Performance
- Simulation
- based on measured test beam HPD data
- global pattern recognition
- background photons included
- of detected photons
- 7 Aerogel 33 C4F10 18 CF4
- Angular resolution mrad
- 2.00 Aerogel 1.45 C4F10 0.58 CF4
?-K separation
18Bd -gt ?? ?
- sensitive to CKM angle ?
- Adir and Amix depend also on P/T and strong
phase ? - ?? 20 - 50 in 1 year
- ? dependent
- if P/T from elsewhere
- Backgrounds have
Tree T
Penguin P
19Bs -gt Ds?K?
- Both diagrams of O(?3)
- expect large
- Rate asymmetries measure angle g-2dg
- Expect 2400 events in 1 year of data taking
- s(g-2dg) 60 .. 140
20RICH Construction
Photo detectors
RICH 1
Beam-pipe
14 X0
Kapton beam-pipe seal
Mirrors
21RICH Construction II
RICH 2
12.4 X0
Finite Element Analysis Static deflections Natural
frequencies
Mirrors
Side view
Top view
Photo detectors
22RICH Electronics
- Pixel chip
- encapsulated, binary, 40 MHz, 321 MUX
- Level 0
- on detector
- Gbit optical links
- clocks, triggers - TTC
- Level 1
- in counting room
- buffers data L1 latency, transports to DAQ
- zero suppression
- TTC, DCS interface
23Technical Design Report
Division of responsibilities
- Submitted 7.9.2000
- other institutes
- CERN
- Genova, Milano
24RICH Project Schedule
25Vertex Detector
VErtex LOcator Design
- Si strip detectors p-n, n-n, single sided,
double metal read-out 220 ?m thick, 1800 wedges - Optimized for Level 1 trigger (L1)
- Alternate r and phi strip detectors varying strip
pitch 20 - 40 ?m in r - Detector halves retracted by ? 30 mm
in y during injection - 8 mm from beam during physics
- Radiation damage
- may replace detectors after a few years
Si detectors
Si Strip Layout radial phi
26VELO Design
Optimisation
Toblerone RF shield
- Use Liverpool MAP farm (300 Linux PCs)
- 3.5 Million events
- optimize of stations, positions, outer inner
radii - 25 stations, mounted in toblerone RF shields
- 220 k channels
- 9.5 hits/ track
- Proper time resolution
- st 43 fs Bs -gt Dsp
- sensitive up to xs 75 (1 year)
27VELO RD Tests
Testbeam
Setup 200 mm p-n Micron
- irradiated prototypes
- cluster finding efficiency
- resolution
- signal shape
- Analogue read-out
- Front-end chip design
- sub micron - BEETLE
- DMILL - SCTA128_VELO
28VELO Summary
- Geometry
- smallest pitch where most important for impact
parameter resolution, at inner radius pixels
of 20 x 6300 ?m2 - optimum for L1 trigger
- constant occupancy lt 5 x 10-3
- Thin detectors
- read out at outer rim
- minimize multiple scattering
- S/N 15 sufficient for L1 trigger
- Number of readout channels
- 220 k reflects in cost
- Technical Design Report expected by April 2001
- UK responsibilities
- Silicon detectors, hybrids, and assembly
29UK Costs
30Conclusions
- LHCb is progressing rapidly since Technical
Proposal - Major technology choices made, e.g. pixel
HPD baseline for RICH photo detectors - Technical Design Reports
- Magnet approved,
- RICH ECAL submitted
- other subsystems on track
- UK groups have large responsibilities for
- RICH
- Vertex detector
- Software / Computing
- Construction starts soon
31New Methods
- New strategies for measuring CKM angles - direct
- combine Bd -gt ??K - charged and neutral B to
extract g - ?? 20 - 70 ambiguous solutions
- combine Bs -gtKK and Bd -gt ??
- ?? 40 ?? known, U-spin
- LHCb RICH at its best
- combine Bd,s -gtDd,s D-d,s
- O(100k) events per year
- ?? a few 0
- Overconstrain CP angles a, b, g, and dg
32Rare Decays
- Bs -gt mm-
- Standard Model branching ratio 3.7 x
10-9 ideal to search for new physics - FCNC - Expected signal (bkgd) 11 (3.3) 1 year
- Bd -gt Kmm-
- Standard Model branching ratio 1.5 x
10-6 dimuon mass spectrum, forward-backward
asymmetry - combine with Bd -gt r mm- Vts/Vtd
- Expected signal (bkgd) 22400 (1400) 1 year
- Bd -gt Kg
- Standard Model branching ratio 5 x
10-5 search for new physics in CPV
asymmetry O(1) in SM - Expected signal 26000 1 year
33LHCb CP Sensitivities
Parameter Channels Evts/year ?(1
year) LHCb feature 2(??) Bd??? 4900 ?P/T
0 2?-5? PID, hadron trigger Bd?r? 1300 3?-6?
PID, hadron trigger 2?? Bd ? D? 340000 gt
11? PID, hadron trigger ? Bd?J/?Ks 37000 0.6?
?-2?? Bs ?DsK 2400 6?-14? PID, hadron
trigger, ?t ? Bd ? DK 400 10? PID, hadron
trigger ?? Bs ? J/yf 44000 0.6? ?t Bs
oscillations xs Bs ? Ds? 120000 up to 75 hadron
trigger, ?t Rare Decays BR Bs ?
?? lt2?10-9 ?t Bd ? K mm 22400 PID