Introduction to mm-wave astronomy - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction to mm-wave astronomy

Description:

Introduction to mmwave astronomy – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 71
Provided by: IRA58
Category:

less

Transcript and Presenter's Notes

Title: Introduction to mm-wave astronomy


1
Introduction to mm-wave astronomy
  • Michel Guélin
  • Institut de Radioastronomie Millimétrique

2
Introduction to mm-wave astronomy
  • Interest of the mm/submm domain
  • Emission processes at mm/submm wavelengths.
    Absorption.
  • Mm/submm-wave telescopes
  • The plus of interferometry
  • Interstellar molecules which?
  • Interstellar molecules where? (Excerpts of
    recent results)

3
1. Interest of the mm/submm domain
  • h?kT 1.44 K 30 GHz 1 cm-1
  • Black-body emission peaks at ?mhc/3kT0.48/T cm
  • Dust emission peaks at ?mhc/(3ß)kT0.3/T cm
  • Typical energies involved in molecular
    transitions
  • SED of galaxies
  • SZ effect, interstellar scintillation (VLBI)
  • Atmosphere transparency

4
Black body emission Cosmic Background radiation
COBE
CBR peaks at 1.76 mm
5
Interstellar Clouds
n10-103 cm-3 T20-100 K Avlt1
Diffuse Cloud
n103-106 cm-3 T8-15 K Avgt1
Dark Cloud
Dust emission peaks at 0.3 mm
6
Thermal Emission from cold dust peaks at submm
wavelengths. Rayleigh-Jeans approximation (ST)
is valid only at mm vavelengths
NIR
7
SED of the quasar PSS23221944 z 4.12 (Cox et
al.)
SED of M82
Maximum at 2 THz 94µm Tdust 32 K
Minimum of continuum emission around 1 cm
wavelength
8
Typical energies involved in molecular
transitions
  • Electronic transitions
  • Vibrational transitions
  • Rotational transitions
  • Electronic/nuclear Spin interactions

bending
stretching
9
De Mello
low-energy rotational transitions of small
molecules lie at mm wavelengths
10
Atmosphere
  1. Absorbs electromagnetic waves
  2. Introduces a phase delay

11
Atmospheric refraction at mm/submm waves main
contributors
  • Oxygen
  • Homonuclear
  • No permanent electric dipole moment ?e0
  • Triplet state 3? ? ?
  • Large magnetic dipole moment ?e10-20 emu
  • 16O18O is heteronuclear ?e 10-24 esu 10-6 D
  • Scale height 8 km
  • Water vapour
  • Planar, C2v
  • Electric dipole
  • Ortho/Para water
  • Scale height 2 km
  • Broad lines
  • Ozone
  • alt 11-40km
  • Narrow lines
  • Mostly above 200 GHz

?
?b1.9 D
?
?b0.5 D
12
Opacity of the Atmosphere Altitude 3000 m J.
Cernicharo J. Pardo
13
Atmospheric transmission (calculations by J.
Pardo)
14
(No Transcript)
15
Atmospheric transmission _at_PdB
future
present
16
Phase fluctuations caused by unstable atmosphere
scale as d/?
400 m 330 m
56 m
17
2. Emission processes at mm/submm wavelengths
  • Atoms electronic (spin, Rydberg states)
  • Molecules electronic, vibrational, rotational
  • Free electrons
  • Synchrotron
  • Thermal free-free
  • Dust particles (grey body radiation)

18
Atomic fine structure lines
  • Electrons orbital momentum l
  • spin s
  • Atom total orbital momentum L ? l
  • total spin S ? s
  • Total electronic angular momentum

  • JLS

S
J
L
19
Atomic C fine structure transitions
  • Selection rules ?S0, ?L1, ?J0,1

CI S1,L1
CII S1/2, L1
E/k
100
2 THz
2P3/2
3P2
158 µm
370µm
A7.9 10-8s-1
A2.4 10-6s-1
3P1
500 GHz
610 µm
A2.7 10-8s-1
2P1/2
0
0
3P0
20
(No Transcript)
21
?
22
Calculation of the rotational constant B(linear
molecule)
I(CO) (1216)/281.132 8.75 B(CO) 57 GHz
Diatomic XY
Linear XYZ
Bent YXY
23
Application to HC5N
  • 1.0569 1.2087 1.3623 1.2223 1.348 1.2223 1.3636
    1.1606

B01331.3327 MHz rotation constant D00.30102
kHz distortion constant ?J32?31
2B0(J1)-4D0(J1)385201 MHz
Gordy Cook p. 146
24
(No Transcript)
25
Covalent Radii (Ã…) and Electronegativity of
atoms (after L. Pauling) rAB rArB-??xA-xB?
Atom Single bond Double bond Triple bond Electronegativity
H 0.32 2.1
C 0.772 0.667 0.603 2.5
N 0.74 0.62 0.55 3.0
O 0.74 0.62 0.55 3.5
F 0.72 0.60 3.9
Si 1.17 1.07 1.00 1.8
P 1.10 1.00 0.93 2.1
S 1.04 0.94 0.87 2.5
Cl 0.99 0.89 3.0
26
Rotational constants of some molecules
  • CO 57.8 GHz
  • CN 56.6
  • HCN 44.3
  • HC3N 4.54
  • HC5N 1.33

27
Signal strength radiative transfer in the
optically thin case
I?
I?dI?
dl
I?
I0
Optically thin, homogeneous medium
??
?
Radiation temperature
28
(Optically thin case, TBGltltTrot) Units K, cm-2,
GHz, D, km/s
T(CO1-0) (1-e-t) Trot N(CO)/?v 2.8
10-14/Trot (optically thin) T(CO1-0)Trot
optically thick case t 3 10-14 N(CO)/(?vTrot2)
29
Signal strength for molecular clouds
  • N(H2) 1021 Av 1022 cm-2 ?v1 km/s
    TK20 K
  • t(CO1-0) 3 10-14 N(CO)/Trot2 TrotTK
  • X(12CO) 10-4 t(CO) 75 Trad(12CO) 20 K
  • X(C18O) 2 10-7 t(CO) 0.15 Trad(13CO)
    3 K
  • t(HNC1-0) 1 10-11 N(HCN)/Trot2 Trot TK/2
  • X(H12CN) 10-8 t(CO) 10 Trad(12CO) 10 K
  • X(H13CN) 10-10 t(CO) 0.1 Trad(12CO) 1 K
  • Now, if molecular abundance is smaller an/or if
    source filling factor small (1/100 or less),
    signals become really weak!

30
(No Transcript)
31
Dust thermal emission at 1.3 mm
Cloud with N(H2) 1022 cm-2, Td 20 K
S1300 20 mJy/beam (4 mK at 30-m telescope) less
if source does not fill the beam Signals are
very week.
32
Astronomical Source Handy formulae for dusty
molecular cloud(s)
  • HI line emission
  • Molecular line emission
  • VisualIR light extinction
  • Thermal dust emission

33
3. Mm-wave Radio telescopes (requirements)
  • Large collecting surface for sensitivity
  • Large physical dimensions for angular resolution
  • High altitude to reduce atmospheric water vapor
    absorption
  • Heterodyne receivers for high spectral resolution
    (10-7 ?10-8)

34
IRAM 30-m telescope (Sierra Nevada,
Spain) Altitude 2900 m surface accuracy 50 µm
(night)
35
The Green Bank telescope (Image courtesy
NRAO/AUI)
No aperture blockage!
Surface accuracy300 µm
36
APEX 12-m telescope (Atacama, Chile) Altitude
5100 m surface accuracy 17µm
37
A Gallery of mm/submm Interferometers
Plateau de Bure (F) 2500 m
SMA (Hawaii) 4000m
CARMA (Ca) 2300 m
38
Mmwave inter 2008
Millimeter interferometers in 2008
m²
380 148 532
CARMA SMA PdB
Scon mJy
Slin mJy
2.3 - 0.9
0.36 0.40 0.14
4.6 5.8 2.9
1 2 2
CARMA SMA PdB
220040702550
200
39
VLA (up to 7 mm)
40
Global mm VLBI Network
41
ALMA
42
4. The plusses of interferometry
  • High angular resolution (_at_ ?1 mm 0.25 with
    PdB 20 µarcsec with VLBI)
  • Large collective area
  • No need of reference position (factor 2 in
    sensitivity replaced by N(N-1)/N2)
  • Flatter baselines (depends less on
    receiver/atmosphere stability). Makes possible
    composite spectra.
  • Field of view (much) with many independent pixels
    ?good noise statistics makes possible secure
    detections down to 4 sigma.
  • Balanced observations for special observations
    polarimetry, SZ
  • Accurate source positions (by stable atmosphere
    HPBW/SNR)
  • Eliminates extended (foreground/background)
    emission

43
4.b The minus of interferometry
  • - Several receivers to build more complex
    correlator, but heterodyne interferometry is easy
  • Short spacings filtered out extended source
    emission lost (partly recovered by mosaicing
    techniques)
  • Needs a stable atmosphere (or needs phase
    corrections or self-calibration)
  • Difficult to observe very strong sources, such as
    planets (unless modelized)

44
Interferometers vs single dish telescopesSummary
Plus and Minus
Interferometer Single Antenna
Total area -
Angular resolution -
Baseline quality -
Field of view --
Short spacings ---() (-)
Receiver cost --
Site requirements -
45
5. Interstellar molecules which?
46
Ref. PCMI/CNRS
47
Ref. PCMI/CNRS
48
GBT 100-m
IRAM 30-m
NRO 45-m
Kitt Peak 12-m
49
(No Transcript)
50
Inter- Circumstellar molecules(not counting
isotopologues)
  • 135 species (-5 ?)
  • 14 ions
  • 29 free radicals (part of which identidied in
    space prior to be studied in the laboratory)
  • 19 isomers or highly unstable closed-shell
    molecules
  • 18 molecules with refractory atoms, amidst which
    8 silicon compounds
  • 5 cycles, among which benzene (1 line!). No other
    benzenic ring detected, except perhaps PAHs.

51
6. Interstellar Molecules where?
  • Diffuse IS clouds
  • Cold dark clouds
  • Protostellar cores
  • Hot cores (star forming regions)
  • Circumstellar disks
  • Circumstellar envelopes
  • Jets and shocked regions
  • External galaxies up to z6.4!

52
The Orion-A Hot Core
53
Same spectrum as previous one, but with line
identifications (in red). Unidentified lines in
green (noted U)
54
(No Transcript)
55
Same as previous note the differences in the
spectra
56
C
B
A
D
IRC2
B
Maps of Orion-IRC2 in the lines of 6 different
molecules The molecules arise from different hot
cores (or corinos) labelled A,B,C and D.
Guelin, Nobel Symposium 2006
57
(No Transcript)
58
Holes in Proto-planetary Disks
Beam 0.39 x 0.25 PA230
Beam 0.52 x 0.28 PA 220
Inner cavity of 50 AU
GM Aur (Wilner et al. 2006)
LkCa15 (Pietu et al. 2006)
59
(No Transcript)
60
HH211 at 1.5 resolution Molecular outflow
driven by a Class 0 low-mass protostar
(dynamical age1000 yr, distance of 300pc)
High velocity CO J2-1
(Gueth Guilloteau 1999)
61
1.5? 0.3 resolution
Gueth et al. (in prep)
62
AGB star envelope IRC10216
Molecular-line emission
IR emission
63
Spectral line survey of The C-star envelope
IRC10216 80-250 GHz 3mm-1.2mm Cernicharo,
Guelin, Kahane (2000)
64
IRC10216 (CW Leo) VVsys
Guelin et al. 1998
65
  • External galaxies
  • Andromeda galaxy
  • High redshift quasars

66
Nieten et al. 2006
67
Neininger et al. 1998, Nature
68
(No Transcript)
69
Multiple CO lines from SMMJ16359 (z2.5)
Sum
Weiss et al. (2005)
70
(No Transcript)
71
P. Cox
72
APM082795255
APM082795255 (z3.9)
Wagg et al. 2006
LHCO / LCO(4-3) 0.26
HCO J5-4
Garcia-Burillo et al. 2006
73
Credits and References
  • J. Cernicharo (IRAM 2003 Summer School)
  • PCMI/CNRS website
  • UMIST website
Write a Comment
User Comments (0)
About PowerShow.com