Title: Multiferroics
1Multiferroics
Ljubljana March 2009
Centre
for Ferroics
2Outline
- High temperature phases of BiFeO3
- R. Palai, R. S. Katiyar, H. Schmid, J. Robertson,
S. A. T. Redfern, X. Lou - Fluoride ferrimagnets
- R. Blinc et al.
- Magnetoelectric multilayer capacitors
- C. Israel, N. Mathur, J. F. Scott
3Multiferroics
1.0 ?m
a
4Multiferroic oxides
M. Bibes (unpublished)
5Phase diagram of BiFeO3
H. Schmid (1986) E. I. Speranskaya (1965)
6Schematic phase diagram
7DTA data
R. Palai et al. condmat (2007)
8X-ray data
R. Palai et al. PRB 77, 014110 (2007)
9Phase boundary
10Domain in BiFeO3
11Metal-insulator transition
12Resistivity of BiFeO3
13Band structure (orthorhombic)
J. Robertson (2007)
14Band structure (cubic)
J. Robertson (2007)
15Is the ß-phase monoclinic?
- Yes, see paper by Dkhil and Kreisel this week
- No
- No monoclinic domain walls are seen
- Violates principle of maximal subgroup for 2nd
order transitions
16Spin reorientation and magnons in BiFeO3
17Magnons in BiFeO3
18Magnons in BiFeO3
Intensity (a.u.)
?(cm-1)
T (K)
19MAGNETOELASTIC EFFECTS
S A Redfern
20ELASTIC ANOMALIES
21DIELECTRIC DATA ON SINGLE-XTAL BiF
G. CATALAN
J. HONG
22FIELD-COOLED AND ZERO-FIELD_COOLED DC
MAGNETIZATION
Singh and Katiyar
M (10-4 emu/g)
T (K)
23Multilayer capacitors
The market for MLCs is gt 109/year This means
1012 capacitors made per year - You probably
already own several thousand of those!
24K3Fe5Fe15
Weak Ferromagnetism and Ferroelectricity in
K3Fe5F15 Robert BLINC1, Gaper Tavcar1, Boris
emva1, Darko Hanel1, Zvonko Jaglicic2, Zvonko
Trontelj2, Pavle Cevc1, Cene Filipic1, Adrijan
Levstik1, N. Dalal3, N. Ramachandran3, and J.
Krzystek3, James F. Scott4 1J. Stefan Institute,
Ljubljana, Slovenia 2Institute of Mathematics,
Physics and Mechanics, Ljubljana,
Slovenia 3Florida State University, Tallahassee,
Florida, USA 4University of Cambridge,
Cambridge, UK Abstract Here we report on the
observation of a weak ferromagnetic transition at
TN 123 K in a K3Fe5F15 system which is
ferroelectric and ferroelastic below Tc 490 K.
The magnetization continuously increases with
decreasing T down to 6 K. Mössbauer spectra show
a spontaneous magnetic ordering and at least
three sites corresponding to Fe2 and Fe3. The
ratio between Fe2 and Fe3 is 60 40. At 6 K
there are two magnetically ordered sextets with
internal fields of 585 kOe and 263 kOe. At 122 K
and at low frequencies the system shows
dielectric anomalies characteristic of
magnetoelectric behaviour.
25Dielectric and magnetic response
26Dielectric loss
27Conclusions
- Metal-insulator phase transition in BiFeO3
confirms the Mössbauer study of H. K. Mao et al.
(JETP Letters 2005) - Spin reorientation at 140 K and 200K in BiFeO3
other anomalies at 53K and 240K - One cent room temperature magnetoelectric
detectors - Ferrimagnetic fluoride multiferroic at 123 K
28Magnetic hysteresis
29X-ray diffraction
30Dielectric constant
31Ferroelectric hysteresis
32(No Transcript)
33Magnetodielectric effect
34Cole-cole plots
35Magnetoelectric freezing
36Magnetoelectric freezing