Title: The goal of Data Reduction
1The goal of Data Reduction
- From a series of diffraction images (films),
obtain a file containing the intensity (I) and
standard deviation (s(I)) for each reflection,
hkl.
Final intensities
Set of films
H K L I s 0 0 4 3295.4
174.0 0 0 8 482.1 28.7 0 0 12 9691.0
500.7 0 0 16 1743.9 67.4 0 0 20
5856.0 221.0 0 0 24 14066.5 436.2 0 0
28 9936.3 311.7 0 0 36 8409.8 273.4 0
0 40 790.5 32.8 0 0 44 103.4 18.4 .
. . . . . . . . . .
. . . . 37 7 0 28.5
16.2 37 7 1 110.1 10.9 37 7 2
337.4 13.3 37 7 3 98.5 10.6 37 7
4 25.9 10.7
- Index
- Integrate
- Merge
2Indexing
Assign an h,k,l coordinate to each reflection of
the first image.
3Integration
Within a spot, sum up the intensity of each
pixel. Repeat for each spot on each film.
4Merge
K
Plane L0
? -H,-K, L -K, H, L K,-H, L H, K,-L
H,-K,-L K, H,-L -K,-H,-L -H,-K,-L
K,-H,-L -K, H,-L -H, K, L -K,-H, L K, H, L
K,H,L
K,-H,L
H,K,L
H,-K,L
H
-H,K,L
-H,-K,L
-K,-H,L
-K,H,L
Average (merge together) symmetry related
reflections.
5Three steps
- From a series of diffraction images, obtain a
file containing the intensity (I) and standard
deviation (s(I)) for each reflection, hkl.
H K L I s 0 0 4 3295.4
174.0 0 0 8 482.1 28.7 0 0 12 9691.0
500.7 0 0 16 1743.9 67.4 0 0 20
5856.0 221.0 0 0 24 14066.5 436.2 0 0
28 9936.3 311.7 0 0 36 8409.8 273.4 0
0 40 790.5 32.8 0 0 44 103.4 18.4 .
. . . . . . . . . .
. . . . 37 7 0 28.5
16.2 37 7 1 110.1 10.9 37 7 2
337.4 13.3 37 7 3 98.5 10.6 37 7
4 25.9 10.7
2. integrate
Set of films
Final intensities
3. merge
1. index
6Indexing
How do we find the correct h,k,l coordinate of
each reflection?
7For a given spot on the film, we simply have to
trace the diffracted ray back to the reciprocal
latticepoint (h,k,l)
The answer is HKL3,2,2
3 lattice points in a direction
What parameters must be defined to complete this
construction?
815 parameters must be determined to index a spot.
The wavelength of the incident radiation
Unit cell parameters a,b,c, a,b,g
9Which of the 15 parameters are set or known?
Which are unknown?
The wavelength of the incident radiation
Unit cell parameters a,b,c, a,b,g
10How is the unit cell and crystal orientation
determined?
Acta Cryst. (1999), D55, 1690-1695
11Figure 1.
12Choose principle axes by inspection
13One dimensional Fourier transforms (7300
orientations)
Find all pairs of spots that can be connected by
a vector of given orientation, but any length.
e.g.
14One dimensional Fourier transforms (7300
orientations)
Find all pairs of spots that can be connected by
a vector of given orientation, but any length.
e.g.
15Figure 3.
You will find some vector lengths are represented
in the diffraction pattern much more frequently
than others. These vector lengths differ by
integral multiples of one particular
valuecorresponding to the unit cell dimension.
16Figure 3.
17One dimensional Fourier transforms (7300
orientations)
18Figure 4.
19Lattice parameters determined
A group of 30 possible non-linear vectors are
calculated. 3 vectors at a time are combined to
give a basis set of direct-space primitive unit
cells. For each combination of 3 vectors, a
distortion index is evaluated which describes how
the observed fitted reciprocal lattice deviates
from the 14 Bravais lattices. A chi squared
statistics describes the deviations of the
observed reflections from the theoretical lattice.
20Xdisplay and Peak Search
1) Display first image in your data set with
xdisplay. xdispccd images/my.img 2) Press Peak
Search. Red circles indicate position of
prominent peaks (spots). 3) Evaluate whether you
need more or fewer peaks. 4) Pres OK 5) Spot
positions (x,y) are written to a file
peaks.file.
21Peaks.file
- 7777 0.0 0.0 1 1
- height X Y frame
- 13 2695.7 1350.5 1 1
- 27 2669.5 1062.4 1 1
- 16 2570.6 1143.5 1 1
- 26 2569.4 1302.4 1 1
- 30 2562.5 1592.5 1 1
- 32 2554.5 1902.4 1 1
- 32 2524.5 1103.4 1 1
- 22 2514.5 1523.8 1 1
- 12 2503.4 1316.6 1 1
- 21 2494.5 1949.5 1 1
- 15 2492.5 1923.4 1 1
- 35 2488.5 1721.5 1 1
- 17 2483.5 1870.6 1 1
- 12 2479.4 1212.5 1 1
- 32 2465.5 1452.5 1 1
- 15 2456.4 638.4 1 1
- 13 2444.7 900.7 1 1
22Run autoindexing script
The autoindexing script is simply titled
a. Type denzo in the terminal window to
start the program Denzo. Then type _at_a
23(No Transcript)
24Select a space group with desired Bravais Lattice
(e.g. new space group P4)Predicted pattern
should match observed diffraction pattern.go
to refine
25Necessary to index film 2 from scratch? film3?
etc?
1o
Film 2, exposed over 2 to 3 degrees
Film 1, exposed over 1 to 2 degrees
26The first film provides all the parameters need
to predict the location of every spot on every
film.
The wavelength of the incident radiation
Unit cell parameters a,b,c, a,b,g
27Integration
Adjust integration box size and background box
size. spot elliptical 0.6 0.6 background
elliptical 0.7 0.7
28Insert refined unit cell and crystal orientation
parameters into integration script
(integ.dat).Type list to obtain refined
paramers..
Paste parameters into integration script
(integ.dat).
29Integrated intensities are written to .x files
Film 1, exposed over 1 to 2 degrees
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1
.
30One .x file for each film
prok_001.img
prok_180.img
prok_002.img
Film 1, exposed over 1 to 2 degrees
Film 2, exposed over 2 to 3 degrees
Film 180, exposed over 180 to 181 degrees
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix-29 -20 33 1 212.3 220.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 52.3 50.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
prok_180.x
prok_002.x
prok_001.x
31 h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
360 frames, 1 degree rotation each
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
h k l flag I(profit)
I(prosum) c2 s(I) cos incid. X
pix Y pix 29 20 -33 1 202.3 200.8 1.36
17.4 0.556 6.4 1353.0 29 21 -31 1 102.1
105.0 1.08 7.7 0.560 16.8 1421.5 30 26
-19 1 1291.2 1323.2 1.19 50.0 0.554 23.9
1808.7 31 28 -11 1 1554.0 1618.7 1.26
95.1 0.536 24.2 2061.6 29 22 -29 1 24.0
25.2 1.29 1.2 0.564 28.0 1489.1 29 20 -33
1 202.3 200.8 1.36 17.4 0.556 6.4
1353.0 29 21 -31 1 102.1 105.0 1.08 7.7
0.560 16.8 1421.5 30 26 -19 1 1291.2 1323.2
1.19 50.0 0.554 23.9 1808.7 31 28 -11 1
1554.0 1618.7 1.26 95.1 0.536 24.2
2061.6 29 20 -33 1 202.3 200.8 1.36 17.4
0.556 6.4 1353.0 29 21 -31 1 102.1 105.0
1.08 7.7 0.560 16.8 1421.5 30 26 -19 1
1291.2 1323.2 1.19 50.0 0.554 23.9 1808.7
31 28 -11 1 1554.0 1618.7 1.26 95.1 0.536
24.2 2061
prok_001 -gt 360.x
With .x files, we can map intensities onto a
reciprocal lattice
- Accuracy will improve if we Merge multiple
observations of the same reciprocal lattice point - But, we must test if rotational symmetry exists
between lattice points.
32Is it Laue group 422 Or Laue group 4?
P422
P4 H, K,L -H,-K,L -K, H,L K,-H,L
H, K,-L H,-K,-L K, H,-L -K,-H,-L
Test existence of 4-fold Symmetry
and Perpendicular 2-fold symmetry
Test existence of 4-fold symmetry
33j observations of the reflection 30 22 6
j H K L I
1 30 22 6 100
2 -30 -22 6 500
3 22 -30 6 300
ltIgt (100 500 300) / 3
300
SIj-ltIgt 100-300500-300300-300
200 200
0 400
SIj 100 500 300
900
Rsym 400/900 0.44 44
34Statistics are analyzed as a function of
resolution (N shells).
Discrepancy between symmetry related reflections
(Rsym) increases with increasing resolution. Why?
Shell Rsym
100-5.0Å 0.04
5.0-3.0Å 0.06
3.0-2.0Å 0.08
2.0-1.7Å 0.15
35SIGNAL TO NOISE RATIO (I/s)
Average I/s decreases with increasing
resolution High resolution shells with I/s lt2
should be discarded.
Shell I/sI
100-5.0 Å 20.0
5.0-3.0 Å 10.0
3.0-2.0 Å 7.0
2.0-1.7 Å 3.0
36COMPLETENESS? What percentage of
reciprocal Lattice was measured for a
given Resolution limit? Better than 90 I hope.
Shell completeness
100-5.0Å 99.9
5.0-3.0Å 95.5
3.0-2.0Å 89.0
2.0-1.7Å 85.3
Overall 92.5
37Assignment
38Effect of mosaicity and wavelength spread Dl
39Figure 5.
40Figure 6.