Title: Steady-state flux optima
1Steady-state flux optima
RC
Flux Balance Constraints RA lt 1 molecule/sec
(external) RA RB (because no net
increase) x1 x2 lt 1 (mass conservation) x1 gt0
(positive rates) x2 gt 0
C
x1
RB
RA
A
B
x2
D
RD
x2
Max Z3 at (x21, x10)
Feasible flux distributions
Z 3RD RC (But what if we really
wanted to select for a fixed ratio of 31?)
x1
2FBA - Linear Program
- For growth, define a growth flux where a linear
combination of monomer (M) fluxes reflects the
known ratios (d) of the monomers in the final
cell polymers. - A linear programming finds a solution to the
equations below, while minimizing an objective
function (Z). Typically Z ngrowth (or
production of a key compound). - i reactions
3Biomass Composition
ATP
GLY
LEU
coeff. in growth reaction
ACCOA
NADH
FAD
SUCCOA
COA
metabolites
4Flux ratios at each branch point yields optimal
polymer composition for replication
x,y are two of the 100s of flux dimensions
5Minimization of Metabolic Adjustment (MoMA)
6Flux Data
7C009-limited
200
WT (LP)
180
7
8
160
140
9
120
10
Predicted Fluxes
100
r0.91 p8e-8
11
13
14
12
3
1
80
60
40
16
20
2
5
6
4
15
17
18
0
0
50
100
150
200
Experimental Fluxes
250
250
Dpyk (LP)
Dpyk (QP)
200
200
18
7
r0.56 P7e-3
8
150
r-0.06 p6e-1
150
7
8
2
Predicted Fluxes
Predicted Fluxes
10
100
9
13
100
9
11
12
3
1
14
10
11
13
14
12
3
50
50
5
6
4
16
16
2
15
5
6
0
15
17
0
17
18
4
1
-50
-50
-50
0
50
100
150
200
250
-50
0
50
100
150
200
250
Experimental Fluxes
Experimental Fluxes
8Competitive growth data reproducibility
Correlation between two selection experiments
Badarinarayana, et al. Nature Biotech.19 1060
9Competitive growth data
On minimal media
negative small
selection effect
C 2 p-values 4x10-3 1x10-5
LP QP
Novel redundancies
Position effects
Hypothesis next optima are achieved by
regulation of activities.
10Lab evolution optimization
C.ph Tolonen Alcohol resistance E.co Reppas/Lin
Trp/Tyr exchange E.co Lenski Citrate
utilization E.co Palsson Glycerol
utilization E.co Edwards Radiation
resistance E.co Ingram Lactate
production E.co Stephanopoulos Ethanol
resistance E.co Marliere Thermotolerance M.tb JJ
Diarylquinoline resistance E.co DuPont 1,3-pro
panediol production
11Non-optimal evolves to optimal
Ibarra et al. Nature. 2002 Nov
14420(6912)186-9. Escherichia coli K-12
undergoes adaptive evolution to achieve in silico
predicted optimal growth.
12Cross-feeding symbiotic systemsaphids Buchnera
- obligate mutualism
- nutritional interactions amino acids and
vitamins - established 200-250 million years ago
- close relative of E. coli with tiny genome (641kb)
Internal view of the aphid. (by T. Sasaki)
Bacteriocyte (Photo by T. Fukatsu)
Buchnera (Photo by M. Morioka)
Aphids
http//buchnera.gsc.riken.go.jp
13Shigenobu et al. Genome sequence of the
endocellular bacterial symbiont of aphids
Buchnera sp.APS. Nature 407, 81-86 (2000).
14Trp Tyr (key pharma precursors)Cross-feeding
synthetic ecosystem(syntrophic co-culture)
15Covariance in lab evolution
Second Passage
First Passage
?trp/?tyrA pair of genomes shows the best
co-growth Reppas, Lin Church Shendure et
al. Accurate Multiplex Polony Sequencing of an
Evolved Bacterial Genome(2005) Science 3091728
16Sequence monitoring of evolution(optimize
transport drug resistance)
Sequence
Reppas, Lin Church
17Evolved syntrophic strain pairs
Trp D
Tyr D
18Reading lab-evolved genomessequenced across time
within each time-point
- Independent lines of
- TrpD TyrD co-culture
- 5 OmpF (pore large,hydrophilic gt small)
- 42R-gt G,L,C, 113 D-gtV, 117 E-gtA
- 2 Promoter (cis-regulator)
- -12A-gtC, -35 C-gtA
- 5 Lrp (trans-regulator)
- 1bD, 9bD, 8bD, IS2 insert, R-gtL in DBD.
At late times TyrD becomes prototrophic!
Reppas, Shendure, Porecca
19Resynthesis of mutant combinations---Additive
effects insensitive to order of mutation