Title: DEK
1Quintessence
Dunkle Energie Ein kosmisches Raetsel
2Quintessence
A.Hebecker,M.Doran,M.Lilley,J.Schwindt, C.Müller,G
.Schäfer,E.Thommes, R.Caldwell
3What is our Universemade of ?
4mean values Otot 1.02 Om 0.27 Ob
0.045 Odm 0.225
5Dark Energy homogeneously distributed
6 Dark Energy prediction The
expansion of the Universe
accelerates today !
7209 SN Ia and medians
Tonry et al. 2003
Oh0.7Om0.3
8Structure formation fluctuation spectrum
CMB agrees with galaxy distribution Lyman a
forest and gravitational lensing effect !
Waerbeke
9 consistent cosmological model !
10Composition of the Universe
- Ob 0.045 visible clumping
- Odm 0.225 invisible clumping
- Oh 0.73 invisible homogeneous
-
11What is Dark Energy ? Cosmological Constant
or Quintessence ?
12Cosmological Constant
- Constant ? compatible with all symmetries
- No time variation in contribution to energy
density - Why so small ? ?/M4 10-120
- Why important just today ?
13 Cosm. Const. Quintessence
static dynamical
14Cosmological mass scales
- Energy density
-
- ? ( 2.410 -3 eV )- 4
- Reduced Planck mass
- M2.441018GeV
- Newtons constant
- GN(8pM²)
Only ratios of mass scales are observable !
homogeneous dark energy ?h/M4 6.5 10¹²¹
matter
?m/M4 3.5 10¹²¹
15Time evolution
t² matter dominated universe t3/2
radiation dominated universe
- ?m/M4 a³
- ?r/M4 a4 t -2 radiation dominated
universe -
- Huge age small ratio
- Same explanation for small dark energy?
16Quintessence
- Dynamical dark energy ,
- generated by scalar field
- (cosmon)
C.Wetterich,Nucl.Phys.B302(1988)668,
24.9.87 P.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)L1
7, 20.10.87
17Cosmon
- Scalar field changes its value even in the
present cosmological epoch - Potential und kinetic energy of cosmon contribute
to the energy density of the Universe - Time - variable dark energy
- ?h(t) decreases with time !
18Cosmon
- Tiny mass
- mc H
- New long - range interaction
19Fundamental Interactions
Strong, electromagnetic, weak interactions
On astronomical length scales graviton cosm
on
gravitation
cosmodynamics
20Evolution of cosmon field
- Field equations
- Potential V(f) determines details of the
model - e.g. V(f) M4 exp( - f/M )
- for increasing f the potential decreases
towards zero !
21Cosmic Attractors
Solutions independent of initial conditions
typically Vt -2 f ln ( t ) Oh
const. details depend on V(f) or kinetic term
early cosmology
22Dynamics of quintessence
- Cosmon j scalar singlet field
-
- Lagrange density L V ½ k(f) j j
- (units reduced Planck mass M1)
- Potential Vexp-j
- Natural initial value in Planck era j0
- today j276
23Quintessence models
- Kinetic function k(f) parameterizes the
- details of the model - kinetial
- k(f) kconst. Exponential
Q. - k(f ) exp ((f f1)/a) Inverse power
law Q. - k²(f ) 1/(2E(fc f)) Crossover Q.
- possible naturalness criterion
- k(f0)/ k(ftoday) not tiny or huge !
- - else explanation needed -
24Quintessence becomes important today
25Equation of state
- pT-V pressure
kinetic energy - ?TV energy density
- Equation of state
- Depends on specific evolution of the scalar field
26Negative pressure
- w lt 0 Oh increases (with decreasing
z ) - w lt -1/3 expansion of the Universe is
- accelerating
- w -1 cosmological constant
late universe with small radiation component
27How can quintessence be distinguished from a
cosmological constant ?
28Time dependence of dark energy
cosmological constant Oh t² (1z)-3
M.Doran,
29Early dark energy
- A few percent in the early Universe
- Not possible for a cosmological constant
30Early quintessence slows down the growth of
structure
31Growth of density fluctuations
- Matter dominated universe with constant Oh
-
- Dark energy slows down structure formation
- Oh lt 10 during structure
formation - Substantial increase of Oh(t) since structure has
formed! - negative wh
- Question why now is back ( in mild form )
P.Ferreira,M.Joyce
32Fluctuation spectrum
Caldwell,Doran,Müller,Schäfer,
33Anisotropy of cosmic background radiation
Caldwell,Doran,Müller,Schäfer,
34How to distinguish Q from ? ?
- A) Measurement Oh(z) H(z)
- i) Oh(z) at the time of
- structure formation , CMB - emission
- or nucleosynthesis
- ii) equation of state wh(today) gt -1
- B) Time variation of fundamental constants
35Are fundamental constantstime dependent ?
- Fine structure constant a (electric charge)
- Ratio nucleon mass to Planck mass
36Fifth Force
- Mediated by scalar field
- Coupling strength weaker than gravity
- ( nonrenormalizable interactions M-2 )
- Composition dependence
- violation of equivalence principle
- Quintessence connected to time variation of
- fundamental couplings
R.Peccei,J.Sola,C.Wetterich,Phys.Lett.B195,183(198
7)
C.Wetterich , Nucl.Phys.B302,645(1988)
37Quintessence and Time dependence of
fundamental constants
- Fine structure constant depends on value of
- cosmon field a(f)
- (similar in standard model couplings depend
on value of Higgs scalar field) - Time evolution of f
- Time evolution of a
-
Jordan,
38Variation of fine structure constant
- Observation of (molecular absorption lines
- in the light of quasars )
- Three independent data sets from Keck/HIRES
- ?a/a - 0.54 (12) 10-5
- Murphy,Webb,Flammbaum, june
2003
39Crossover quintessence andtime variation of
fundamental constants
- Upper bounds for relative variation of the
- fine structure constant
- Oklo natural reactor ?a/a lt 10 -7
z0.13 - Meteorites ( Re-decay ) ?a/a lt 3 10 -7
z0.45 - Crossover Quintessence compatible with QSO
- and upper bounds !
40Variation of fine structure constant as function
of redshift
Webb et al
41- Time evolution of fundamental couplings traces
time evolution of quintessence - today wh close to -1
- Small kinetic energy
- Slow change of f
- Slow change of a
- Very small ?a/a for low z !
42Time variation of coupling constants is
tiny would be of very high significance !
Possible signal for Quintessence
43Cosmodynamics
- Cosmon mediates new long-range interaction
- Range size of the Universe horizon
- Strength weaker than gravity
- photon electrodynamics
- graviton gravity
- cosmon cosmodynamics
- Small correction to Newtons law
44Violation of equivalence principle
- Different couplings of cosmon to proton and
neutron - Differential acceleration
- Violation of equivalence principle
p,n
earth
cosmon
p,n
45Differential acceleration ?
- For unified theories ( GUT )
??a/2a
Q time dependence of other parameters
46Link between time variation of a and
violation of equivalence principle
typically ? 10-14
47Summary
- Oh 0.7
- Q/? dynamical und static dark energy
- will be distinguishable
- Q time varying fundamental coupling
constants -
- violation of equivalence principle
48????????????????????????
- Why becomes Quintessence dominant in the present
cosmological epoch ? - Are dark energy and dark matter related ?
- Can Quintessence be explained in a fundamental
unified theory ?
49Cosmon and fundamental mass scales
- Assume all mass parameters are proportional to
scalar field ? (GUTs, superstrings,) - Mp ? , mproton ? , ?QCD ? , MW ? ,
- ? may evolve with time
- mn/M ( almost ) constant - observation !
- Only ratios of mass scales are observable
50Dilatation symmetry
- Lagrange density
- Dilatation symmetry for
- Conformal symmetry for d0
51Dilatation anomaly
- Quantum fluctuations responsible for
- dilatation anomaly
- Running couplings
- V?4-A , Mp(? ) ?
- V/Mp4 ?-A decreases for increasing ? !!
- Egt0 crossover quintessence
52Cosmology
- Cosmology ? increases with time !
- ( due to coupling of ? to curvature scalar )
- late time cosmology explores the ultraviolet
- for large ? the ratio V/M4 decreases to zero
- Effective cosmological constant vanishes
asymptotically for large t !
53Weyl scaling
- Weyl scaling gµ?? (M/?)2 gµ? ,
- f/M ln (? 4/V(?))
- Exponential potential V M4 exp(-f/M)
- No additional constant !
54Crossover Quintessence
-
( like QCD gauge coupling) - critical ? where d grows large
- critical f where k grows large
- k²(f ) 1/(2E(fc f)/M)
- if j c 276/M ( tuning ! )
-
- Relative increase of dark energy in
present - cosmological epoch
55Quintessence and solution of cosmological
constant problem should be related !
56End
57A few references C.Wetterich ,
Nucl.Phys.B302,668(1988) , received
24.9.1987 P.J.E.Peebles,B.Ratra ,
Astrophys.J.Lett.325,L17(1988) , received
20.10.1987 B.Ratra,P.J.E.Peebles ,
Phys.Rev.D37,3406(1988) , received
16.2.1988 J.Frieman,C.T.Hill,A.Stebbins,I.Waga ,
Phys.Rev.Lett.75,2077(1995) P.Ferreira, M.Joyce
, Phys.Rev.Lett.79,4740(1997) C.Wetterich ,
Astron.Astrophys.301,321(1995) P.Viana, A.Liddle
, Phys.Rev.D57,674(1998) E.Copeland,A.Liddle,D.Wa
nds , Phys.Rev.D57,4686(1998) R.Caldwell,R.Dave,P
.Steinhardt , Phys.Rev.Lett.80,1582(1998) P.Stein
hardt,L.Wang,I.Zlatev , Phys.Rev.Lett.82,896(1999)
58Supernova Ia Hubble-diagram
redshift z
Filippenko