DEK - PowerPoint PPT Presentation

About This Presentation
Title:

DEK

Description:

Observation of (molecular absorption lines. in the light of quasars ) ... Different couplings of cosmon to proton and neutron. Differential acceleration ... – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 59
Provided by: cwett
Category:
Tags: dek | molecular

less

Transcript and Presenter's Notes

Title: DEK


1
Quintessence
Dunkle Energie Ein kosmisches Raetsel
2
Quintessence
  • C.Wetterich

A.Hebecker,M.Doran,M.Lilley,J.Schwindt, C.Müller,G
.Schäfer,E.Thommes, R.Caldwell
3
What is our Universemade of ?
4
mean values Otot 1.02 Om 0.27 Ob
0.045 Odm 0.225
5
Dark Energy homogeneously distributed
6
Dark Energy prediction The
expansion of the Universe
accelerates today !
7
209 SN Ia and medians
Tonry et al. 2003
Oh0.7Om0.3
8
Structure formation fluctuation spectrum
CMB agrees with galaxy distribution Lyman a
forest and gravitational lensing effect !
Waerbeke
9
consistent cosmological model !
10
Composition of the Universe
  • Ob 0.045 visible clumping
  • Odm 0.225 invisible clumping
  • Oh 0.73 invisible homogeneous

11
What is Dark Energy ? Cosmological Constant
or Quintessence ?
12
Cosmological Constant
  • Constant ? compatible with all symmetries
  • No time variation in contribution to energy
    density
  • Why so small ? ?/M4 10-120
  • Why important just today ?

13
Cosm. Const. Quintessence
static dynamical
14
Cosmological mass scales
  • Energy density
  • ? ( 2.410 -3 eV )- 4
  • Reduced Planck mass
  • M2.441018GeV
  • Newtons constant
  • GN(8pM²)

Only ratios of mass scales are observable !
homogeneous dark energy ?h/M4 6.5 10¹²¹
matter
?m/M4 3.5 10¹²¹
15
Time evolution
t² matter dominated universe t3/2
radiation dominated universe
  • ?m/M4 a³
  • ?r/M4 a4 t -2 radiation dominated
    universe
  • Huge age small ratio
  • Same explanation for small dark energy?

16
Quintessence
  • Dynamical dark energy ,
  • generated by scalar field
  • (cosmon)

C.Wetterich,Nucl.Phys.B302(1988)668,
24.9.87 P.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)L1
7, 20.10.87
17
Cosmon
  • Scalar field changes its value even in the
    present cosmological epoch
  • Potential und kinetic energy of cosmon contribute
    to the energy density of the Universe
  • Time - variable dark energy
  • ?h(t) decreases with time !

18
Cosmon
  • Tiny mass
  • mc H
  • New long - range interaction

19
Fundamental Interactions
Strong, electromagnetic, weak interactions
On astronomical length scales graviton cosm
on
gravitation
cosmodynamics
20
Evolution of cosmon field
  • Field equations
  • Potential V(f) determines details of the
    model
  • e.g. V(f) M4 exp( - f/M )
  • for increasing f the potential decreases
    towards zero !

21
Cosmic Attractors
Solutions independent of initial conditions
typically Vt -2 f ln ( t ) Oh
const. details depend on V(f) or kinetic term
early cosmology
22
Dynamics of quintessence
  • Cosmon j scalar singlet field
  • Lagrange density L V ½ k(f) j j
  • (units reduced Planck mass M1)
  • Potential Vexp-j
  • Natural initial value in Planck era j0
  • today j276

23
Quintessence models
  • Kinetic function k(f) parameterizes the
  • details of the model - kinetial
  • k(f) kconst. Exponential
    Q.
  • k(f ) exp ((f f1)/a) Inverse power
    law Q.
  • k²(f ) 1/(2E(fc f)) Crossover Q.
  • possible naturalness criterion
  • k(f0)/ k(ftoday) not tiny or huge !
  • - else explanation needed -

24
Quintessence becomes important today
25
Equation of state
  • pT-V pressure
    kinetic energy
  • ?TV energy density
  • Equation of state
  • Depends on specific evolution of the scalar field

26
Negative pressure
  • w lt 0 Oh increases (with decreasing
    z )
  • w lt -1/3 expansion of the Universe is
  • accelerating
  • w -1 cosmological constant

late universe with small radiation component
27
How can quintessence be distinguished from a
cosmological constant ?
28
Time dependence of dark energy
cosmological constant Oh t² (1z)-3
M.Doran,
29
Early dark energy
  • A few percent in the early Universe
  • Not possible for a cosmological constant

30
Early quintessence slows down the growth of
structure
31
Growth of density fluctuations
  • Matter dominated universe with constant Oh
  • Dark energy slows down structure formation
  • Oh lt 10 during structure
    formation
  • Substantial increase of Oh(t) since structure has
    formed!
  • negative wh
  • Question why now is back ( in mild form )

P.Ferreira,M.Joyce
32
Fluctuation spectrum
Caldwell,Doran,Müller,Schäfer,
33
Anisotropy of cosmic background radiation
Caldwell,Doran,Müller,Schäfer,
34
How to distinguish Q from ? ?
  • A) Measurement Oh(z) H(z)
  • i) Oh(z) at the time of
  • structure formation , CMB - emission
  • or nucleosynthesis
  • ii) equation of state wh(today) gt -1
  • B) Time variation of fundamental constants

35
Are fundamental constantstime dependent ?
  • Fine structure constant a (electric charge)
  • Ratio nucleon mass to Planck mass

36
Fifth Force
  • Mediated by scalar field
  • Coupling strength weaker than gravity
  • ( nonrenormalizable interactions M-2 )
  • Composition dependence
  • violation of equivalence principle
  • Quintessence connected to time variation of
  • fundamental couplings

R.Peccei,J.Sola,C.Wetterich,Phys.Lett.B195,183(198
7)
C.Wetterich , Nucl.Phys.B302,645(1988)
37
Quintessence and Time dependence of
fundamental constants
  • Fine structure constant depends on value of
  • cosmon field a(f)
  • (similar in standard model couplings depend
    on value of Higgs scalar field)
  • Time evolution of f
  • Time evolution of a

Jordan,
38
Variation of fine structure constant
  • Observation of (molecular absorption lines
  • in the light of quasars )
  • Three independent data sets from Keck/HIRES
  • ?a/a - 0.54 (12) 10-5
  • Murphy,Webb,Flammbaum, june
    2003

39
Crossover quintessence andtime variation of
fundamental constants
  • Upper bounds for relative variation of the
  • fine structure constant
  • Oklo natural reactor ?a/a lt 10 -7
    z0.13
  • Meteorites ( Re-decay ) ?a/a lt 3 10 -7
    z0.45
  • Crossover Quintessence compatible with QSO
  • and upper bounds !

40
Variation of fine structure constant as function
of redshift
Webb et al
41
  • Time evolution of fundamental couplings traces
    time evolution of quintessence
  • today wh close to -1
  • Small kinetic energy
  • Slow change of f
  • Slow change of a
  • Very small ?a/a for low z !

42
Time variation of coupling constants is
tiny would be of very high significance !
Possible signal for Quintessence
43
Cosmodynamics
  • Cosmon mediates new long-range interaction
  • Range size of the Universe horizon
  • Strength weaker than gravity
  • photon electrodynamics
  • graviton gravity
  • cosmon cosmodynamics
  • Small correction to Newtons law

44
Violation of equivalence principle
  • Different couplings of cosmon to proton and
    neutron
  • Differential acceleration
  • Violation of equivalence principle

p,n
earth
cosmon
p,n
45
Differential acceleration ?
  • For unified theories ( GUT )

??a/2a
Q time dependence of other parameters
46
Link between time variation of a and
violation of equivalence principle
typically ? 10-14
47
Summary
  • Oh 0.7
  • Q/? dynamical und static dark energy
  • will be distinguishable
  • Q time varying fundamental coupling
    constants
  • violation of equivalence principle

48
????????????????????????
  • Why becomes Quintessence dominant in the present
    cosmological epoch ?
  • Are dark energy and dark matter related ?
  • Can Quintessence be explained in a fundamental
    unified theory ?

49
Cosmon and fundamental mass scales
  • Assume all mass parameters are proportional to
    scalar field ? (GUTs, superstrings,)
  • Mp ? , mproton ? , ?QCD ? , MW ? ,
  • ? may evolve with time
  • mn/M ( almost ) constant - observation !
  • Only ratios of mass scales are observable

50
Dilatation symmetry
  • Lagrange density
  • Dilatation symmetry for
  • Conformal symmetry for d0

51
Dilatation anomaly
  • Quantum fluctuations responsible for
  • dilatation anomaly
  • Running couplings
  • V?4-A , Mp(? ) ?
  • V/Mp4 ?-A decreases for increasing ? !!
  • Egt0 crossover quintessence

52
Cosmology
  • Cosmology ? increases with time !
  • ( due to coupling of ? to curvature scalar )
  • late time cosmology explores the ultraviolet
  • for large ? the ratio V/M4 decreases to zero
  • Effective cosmological constant vanishes
    asymptotically for large t !

53
Weyl scaling
  • Weyl scaling gµ?? (M/?)2 gµ? ,
  • f/M ln (? 4/V(?))
  • Exponential potential V M4 exp(-f/M)
  • No additional constant !

54
Crossover Quintessence

  • ( like QCD gauge coupling)
  • critical ? where d grows large
  • critical f where k grows large
  • k²(f ) 1/(2E(fc f)/M)
  • if j c 276/M ( tuning ! )
  • Relative increase of dark energy in
    present
  • cosmological epoch

55
Quintessence and solution of cosmological
constant problem should be related !
56
End
57
A few references C.Wetterich ,
Nucl.Phys.B302,668(1988) , received
24.9.1987 P.J.E.Peebles,B.Ratra ,
Astrophys.J.Lett.325,L17(1988) , received
20.10.1987 B.Ratra,P.J.E.Peebles ,
Phys.Rev.D37,3406(1988) , received
16.2.1988 J.Frieman,C.T.Hill,A.Stebbins,I.Waga ,
Phys.Rev.Lett.75,2077(1995) P.Ferreira, M.Joyce
, Phys.Rev.Lett.79,4740(1997) C.Wetterich ,
Astron.Astrophys.301,321(1995) P.Viana, A.Liddle
, Phys.Rev.D57,674(1998) E.Copeland,A.Liddle,D.Wa
nds , Phys.Rev.D57,4686(1998) R.Caldwell,R.Dave,P
.Steinhardt , Phys.Rev.Lett.80,1582(1998) P.Stein
hardt,L.Wang,I.Zlatev , Phys.Rev.Lett.82,896(1999)
58
Supernova Ia Hubble-diagram
redshift z
Filippenko
Write a Comment
User Comments (0)
About PowerShow.com