Title: Multicomponent Multiphase LB Models
1Multicomponent Multiphase LB Models
Single Component Multiphase
Single Phase (No Interaction)
Attractive
Interaction Strength
Number of Components
Nature of Interaction
Multi- Component Multiphase
Repulsive
Miscible Fluids/Diffusion (No Interaction)
Immiscible Fluids
Inherent Parallelism
Low
High
2Adding a component/substance
- Often just need another loop
- for( subs0 subsltNUM_FLUID_COMPONENTS subs)
- for( j0 jltLY j)
- for( i0 iltLX i)
-
-
-
3One composite u for feq calculation(Eqn. 95 in
Sukop and Thorne note error in 2006 printing)
- // Compute density, Eq. (97), and the sums used
(below) - // in the velocities.
- for( subs0 subsltNUM_FLUID_COMPONENTS subs)
- for( j0 jltLY j)
- for( i0 iltLX i)
-
- rhoijsubs 0.
- u_xijsubs 0.
- u_yijsubs 0.
-
- if( !is_solid_nodeji)
- for( a0 alt9 a)
- rhoijsubs ftemp_ija
- u_xijsubs exaftemp_ija
- u_yijsubs eyaftemp_ija
-
4One composite u for feq calculation
- // Compute the composite velocity and
individual velocities. - for( j0 jltLY j)
-
- for( i0 iltLX i)
-
- if( !is_solid_nodeji)
-
- ux_sum u_xij0/tau0 u_xij1/tau1
- uy_sum u_yij0/tau0 u_yij1/tau1
-
- if( rhoij0 rhoij1 ! 0)
-
- // Composite velocity, Eq. (95).
- uprime_x ( ux_sum) / ( rhoij0/tau0
rhoij1/tau1) - uprime_y ( uy_sum) / ( rhoij0/tau0
rhoij1/tau1) -
- else uprime_x 0. uprime_y 0.
- // Individual velocities, Eq. (96),
x-direction. - if( rhoij0 ! 0) u_xij0 u_xij0
/ rhoij0
5Interparticle Forces
- // Compute fluid-fluid interaction force,
equation (98), - // (assuming periodic domain).
- //
- // We begin by computing psi even though in
this implementation - // it is the same as rho. A different function
of rho could - // be substituted here.
- for( subs0 subsltNUM_FLUID_COMPONENTS subs)
- for( j0 jltLY j)
- for( i0 iltLX i)
- if( !is_solid_nodeji)
-
- psisubsji rhosubsji
-
-
6Interparticle Forces
- // Compute the summations in Eq. (98).
- for( subs0 subsltNUM_FLUID_COMPONENTS subs)
-
- for( j0 jltLY j)
-
- jp ( jltLY-1)?( j1)( 0 )
- jn ( jgt0 )?( j-1)( LY-1)
- for( i0 iltLX i)
-
- ip ( iltLX-1)?( i1)( 0 )
- in ( igt0 )?( i-1)( LX-1)
- Fxtemp 0.
- Fytemp 0.
-
7Interparticle Forces
- if( !is_solid_nodeji)
-
- if( !is_solid_nodej ip) // neighbor
1 - Fxtemp Fxtemp WMex1psisubsj
ip - Fytemp Fytemp WMey1psisubsj
ip - if( !is_solid_nodejpi ) // neighbor
2 - Fxtemp Fxtemp WMex2psisubsj
pi - Fytemp Fytemp WMey2psisubsj
pi - if( !is_solid_nodej in) // neighbor
3 - Fxtemp Fxtemp WMex3psisubsj
in - Fytemp Fytemp WMey3psisubsj
in - if( !is_solid_nodejni ) // neighbor
4 - Fxtemp Fxtemp WMex4psisubsj
ni - Fytemp Fytemp WMey4psisubsj
ni - if( !is_solid_nodejpip) // neighbor
5 - Fxtemp Fxtemp WDex5psisubsj
pip - Fytemp Fytemp WDey5psisubsj
pip - if( !is_solid_nodejpin) // neighbor
6 - Fxtemp Fxtemp WDex6psisubsj
pin
8Interparticle Forces
- Fxsubsji Fxtemp
- Fysubsji Fytemp
- / for( i0 iltLX i) /
- / for( j0 jltLY j) /
- / for( subs0 subsltNUM_FLUID_COMPONENTS
subs) / - // Compute the final interaction forces of Eq.
(98) using - // the summations computed above.
- for( j0 jltLY j)
-
- for( i0 iltLX i)
-
- if( !is_solid_nodeji)
-
- Fxtemp Fx1ji
- Fx1ji -Gpsi1jiFx0ji
- Fx0ji -Gpsi0jiFxtemp
- Fytemp Fy1ji
- Fy1ji -Gpsi1jiFy0ji
- Fy0ji -Gpsi0jiFytemp
9Complementary Densities
Domain 5X100 Periodic boundary
10Complementary Densities
Domain 100X100 Periodic boundary
11Computing big U (aka ueq)
- define BIG_U_X( u_, rho_) \
- (u_) \
- lattice-gtparam.tausubs \
- lattice-gtforcesubsn.force0/(rho_
) \ - lattice-gtparam.tausubs \
- lattice-gtforcesubsn.sforce0/(rho
_) \ - lattice-gtparam.tausubs \
- lattice-gtparam.gforcesubs0
- define BIG_U_Y( u_, rho_) \
- (u_) \
- lattice-gtparam.tausubs \
- lattice-gtforcesubsn.force1/(rho_
) \ - lattice-gtparam.tausubs \
- lattice-gtforcesubsn.sforce1/(rho
_) \ - lattice-gtparam.tausubs \
- lattice-gtparam.gforcesubs1
12Multicomponent Multiphase LBM
- Separate distributions
- Repulsive interaction
13Phase (fluid-fluid) separation
14Laplace Law
- Interfacial tension (as opposed to surface
tension between a liquid and its own vapor)
15Metastability
16MCMP LBM with Surfaces
- Like SCMP except each fluid phase can interact
with surface - Two surface interaction parameters, one
fluid/fluid - Youngs Equation
17MCMP SForce
- for( j0 jltLY j)
-
- jp ( jltLY-1)?( j1)( 0 )
- jn ( jgt0 )?( j-1)( LY-1)
- for( i0 iltLX i)
-
- ip ( iltLX-1)?( i1)( 0 )
- in ( igt0 )?( i-1)( LX-1)
- if( !is_solid_nodeji)
-
- sum_x0.
- sum_y0.
- if( is_solid_nodej ip) // neighbor 1
- sum_x sum_x WMex1
- sum_y sum_y WMey1
- if( is_solid_nodejpi ) // neighbor 2
- sum_x sum_x WMex2
- sum_y sum_y WMey2
- if( is_solid_nodej in) // neighbor 3
- if( is_solid_nodejpip) // neighbor 5
- sum_x sum_x WDex5
- sum_y sum_y WDey5
- if( is_solid_nodejpin) // neighbor 6
- sum_x sum_x WDex6
- sum_y sum_y WDey6
- if( is_solid_nodejnin) // neighbor 7
- sum_x sum_x WDex7
- sum_y sum_y WDey7
- if( is_solid_nodejnip) // neighbor 8
- sum_x sum_x WDex8
- sum_y sum_y WDey8
- for( subs0 subsltNUM_FLUID_COMPONENTS
subs) -
- sforce_xsubsji
-Gadssubssum_x - sforce_ysubsji
-Gadssubssum_y -
-
-
18MCMP surface forces
- A surrounded by itself
- FA G rArB
- A surrounded by solid
- FadsA GadsArA
- FadsA FA leads to
- Since complimentary density is low, Gads should
be small relative to G
1990-degree contact angle
Multicomponent fluids interacting with a surface
when G 0.1 and Gads1 Gads2 -0.01.
20(No Transcript)
2145 Contact Angle
Wetting fluid must have lowest Gads
Multicomponent fluids interacting with a surface
when G 0.1, Gads1 -0.02, and Gads2 0.0507.
222 Phase Flow Analytical Solution
23Co- and Counter-current flows
24Countercurrent air and water
Pressure gradient in air phase
Pressure gradient in water phase
25Density and Viscosity Contrasts
- Large density and viscosity contrasts are a major
challenge of LBM research. - McCracken and Abraham (2005) pressure in
standard multicomponent LB models is p (r1
r2)cs2, where cs is the speed of sound - Significance is that for total pressure to be
constant, the sum of the densities of the 2
species must be constant - Not the case in real gasses, where differing
molecular weights lead to constant pressures
despite different densities