Multicomponent Multiphase LB Models - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Multicomponent Multiphase LB Models

Description:

( 97), and the sums used (below) // in the velocities. ... molecular weights lead to constant pressures despite different densities ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 26
Provided by: mikes4
Category:

less

Transcript and Presenter's Notes

Title: Multicomponent Multiphase LB Models


1
Multicomponent Multiphase LB Models
Single Component Multiphase
Single Phase (No Interaction)
Attractive
Interaction Strength
Number of Components
Nature of Interaction
Multi- Component Multiphase
Repulsive
Miscible Fluids/Diffusion (No Interaction)
Immiscible Fluids
Inherent Parallelism
Low
High
2
Adding a component/substance
  • Often just need another loop
  • for( subs0 subsltNUM_FLUID_COMPONENTS subs)
  • for( j0 jltLY j)
  • for( i0 iltLX i)

3
One composite u for feq calculation(Eqn. 95 in
Sukop and Thorne note error in 2006 printing)
  • // Compute density, Eq. (97), and the sums used
    (below)
  • // in the velocities.
  • for( subs0 subsltNUM_FLUID_COMPONENTS subs)
  • for( j0 jltLY j)
  • for( i0 iltLX i)
  • rhoijsubs 0.
  • u_xijsubs 0.
  • u_yijsubs 0.
  • if( !is_solid_nodeji)
  • for( a0 alt9 a)
  • rhoijsubs ftemp_ija
  • u_xijsubs exaftemp_ija
  • u_yijsubs eyaftemp_ija

4
One composite u for feq calculation
  • // Compute the composite velocity and
    individual velocities.
  • for( j0 jltLY j)
  • for( i0 iltLX i)
  • if( !is_solid_nodeji)
  • ux_sum u_xij0/tau0 u_xij1/tau1
  • uy_sum u_yij0/tau0 u_yij1/tau1
  • if( rhoij0 rhoij1 ! 0)
  • // Composite velocity, Eq. (95).
  • uprime_x ( ux_sum) / ( rhoij0/tau0
    rhoij1/tau1)
  • uprime_y ( uy_sum) / ( rhoij0/tau0
    rhoij1/tau1)
  • else uprime_x 0. uprime_y 0.
  • // Individual velocities, Eq. (96),
    x-direction.
  • if( rhoij0 ! 0) u_xij0 u_xij0
    / rhoij0

5
Interparticle Forces
  • // Compute fluid-fluid interaction force,
    equation (98),
  • // (assuming periodic domain).
  • //
  • // We begin by computing psi even though in
    this implementation
  • // it is the same as rho. A different function
    of rho could
  • // be substituted here.
  • for( subs0 subsltNUM_FLUID_COMPONENTS subs)
  • for( j0 jltLY j)
  • for( i0 iltLX i)
  • if( !is_solid_nodeji)
  • psisubsji rhosubsji

6
Interparticle Forces
  • // Compute the summations in Eq. (98).
  • for( subs0 subsltNUM_FLUID_COMPONENTS subs)
  • for( j0 jltLY j)
  • jp ( jltLY-1)?( j1)( 0 )
  • jn ( jgt0 )?( j-1)( LY-1)
  • for( i0 iltLX i)
  • ip ( iltLX-1)?( i1)( 0 )
  • in ( igt0 )?( i-1)( LX-1)
  • Fxtemp 0.
  • Fytemp 0.

7
Interparticle Forces
  • if( !is_solid_nodeji)
  • if( !is_solid_nodej ip) // neighbor
    1
  • Fxtemp Fxtemp WMex1psisubsj
    ip
  • Fytemp Fytemp WMey1psisubsj
    ip
  • if( !is_solid_nodejpi ) // neighbor
    2
  • Fxtemp Fxtemp WMex2psisubsj
    pi
  • Fytemp Fytemp WMey2psisubsj
    pi
  • if( !is_solid_nodej in) // neighbor
    3
  • Fxtemp Fxtemp WMex3psisubsj
    in
  • Fytemp Fytemp WMey3psisubsj
    in
  • if( !is_solid_nodejni ) // neighbor
    4
  • Fxtemp Fxtemp WMex4psisubsj
    ni
  • Fytemp Fytemp WMey4psisubsj
    ni
  • if( !is_solid_nodejpip) // neighbor
    5
  • Fxtemp Fxtemp WDex5psisubsj
    pip
  • Fytemp Fytemp WDey5psisubsj
    pip
  • if( !is_solid_nodejpin) // neighbor
    6
  • Fxtemp Fxtemp WDex6psisubsj
    pin

8
Interparticle Forces
  • Fxsubsji Fxtemp
  • Fysubsji Fytemp
  • / for( i0 iltLX i) /
  • / for( j0 jltLY j) /
  • / for( subs0 subsltNUM_FLUID_COMPONENTS
    subs) /
  • // Compute the final interaction forces of Eq.
    (98) using
  • // the summations computed above.
  • for( j0 jltLY j)
  • for( i0 iltLX i)
  • if( !is_solid_nodeji)
  • Fxtemp Fx1ji
  • Fx1ji -Gpsi1jiFx0ji
  • Fx0ji -Gpsi0jiFxtemp
  • Fytemp Fy1ji
  • Fy1ji -Gpsi1jiFy0ji
  • Fy0ji -Gpsi0jiFytemp

9
Complementary Densities
  • 6,000 ts

Domain 5X100 Periodic boundary
10
Complementary Densities
  • 2,500 ts

Domain 100X100 Periodic boundary
11
Computing big U (aka ueq)
  • define BIG_U_X( u_, rho_) \
  • (u_) \
  • lattice-gtparam.tausubs \
  • lattice-gtforcesubsn.force0/(rho_
    ) \
  • lattice-gtparam.tausubs \
  • lattice-gtforcesubsn.sforce0/(rho
    _) \
  • lattice-gtparam.tausubs \
  • lattice-gtparam.gforcesubs0
  • define BIG_U_Y( u_, rho_) \
  • (u_) \
  • lattice-gtparam.tausubs \
  • lattice-gtforcesubsn.force1/(rho_
    ) \
  • lattice-gtparam.tausubs \
  • lattice-gtforcesubsn.sforce1/(rho
    _) \
  • lattice-gtparam.tausubs \
  • lattice-gtparam.gforcesubs1

12
Multicomponent Multiphase LBM
  • Separate distributions
  • Repulsive interaction

13
Phase (fluid-fluid) separation
14
Laplace Law
  • Interfacial tension (as opposed to surface
    tension between a liquid and its own vapor)

15
Metastability






16
MCMP LBM with Surfaces
  • Like SCMP except each fluid phase can interact
    with surface
  • Two surface interaction parameters, one
    fluid/fluid
  • Youngs Equation

17
MCMP SForce
  • for( j0 jltLY j)
  • jp ( jltLY-1)?( j1)( 0 )
  • jn ( jgt0 )?( j-1)( LY-1)
  • for( i0 iltLX i)
  • ip ( iltLX-1)?( i1)( 0 )
  • in ( igt0 )?( i-1)( LX-1)
  • if( !is_solid_nodeji)
  • sum_x0.
  • sum_y0.
  • if( is_solid_nodej ip) // neighbor 1
  • sum_x sum_x WMex1
  • sum_y sum_y WMey1
  • if( is_solid_nodejpi ) // neighbor 2
  • sum_x sum_x WMex2
  • sum_y sum_y WMey2
  • if( is_solid_nodej in) // neighbor 3
  • if( is_solid_nodejpip) // neighbor 5
  • sum_x sum_x WDex5
  • sum_y sum_y WDey5
  • if( is_solid_nodejpin) // neighbor 6
  • sum_x sum_x WDex6
  • sum_y sum_y WDey6
  • if( is_solid_nodejnin) // neighbor 7
  • sum_x sum_x WDex7
  • sum_y sum_y WDey7
  • if( is_solid_nodejnip) // neighbor 8
  • sum_x sum_x WDex8
  • sum_y sum_y WDey8
  • for( subs0 subsltNUM_FLUID_COMPONENTS
    subs)
  • sforce_xsubsji
    -Gadssubssum_x
  • sforce_ysubsji
    -Gadssubssum_y

18
MCMP surface forces
  • A surrounded by itself
  • FA G rArB
  • A surrounded by solid
  • FadsA GadsArA
  • FadsA FA leads to
  • Since complimentary density is low, Gads should
    be small relative to G

19
90-degree contact angle
Multicomponent fluids interacting with a surface
when G 0.1 and Gads1 Gads2 -0.01.
20
(No Transcript)
21
45 Contact Angle
Wetting fluid must have lowest Gads
Multicomponent fluids interacting with a surface
when G 0.1, Gads1 -0.02, and Gads2 0.0507.
22
2 Phase Flow Analytical Solution
23
Co- and Counter-current flows
24
Countercurrent air and water
Pressure gradient in air phase
Pressure gradient in water phase
25
Density and Viscosity Contrasts
  • Large density and viscosity contrasts are a major
    challenge of LBM research.
  • McCracken and Abraham (2005) pressure in
    standard multicomponent LB models is p (r1
    r2)cs2, where cs is the speed of sound
  • Significance is that for total pressure to be
    constant, the sum of the densities of the 2
    species must be constant
  • Not the case in real gasses, where differing
    molecular weights lead to constant pressures
    despite different densities
Write a Comment
User Comments (0)
About PowerShow.com