Title: Status of the Hadronic Top Search
1Status of the Hadronic Top Search
P. Azzi, A. Castro, G. Cortiana,T. Dorigo, A.
Gresele, J. Konigsberg, G. Lungu, A.
Sukhanov
- The all hadronic channel
- Samples data and MonteCarlo
- Kinematical Selection
- Tag Rate
- Background and Systematics
- Btagging Efficiency
- Cross section
- Conclusions
2Dataset and kinematical selection optimization
- Dedicated trigger N(jet)gt4 with Etgt15 and
?Etgt125 GeV - ?Lint 165pb-1 with all relevant subdetectors on
and ok - RAW and CORRECTED (L7) JET energy information
used - Signal MC Herwig Detector Simulation TrigSim
- We apply some pre-requisites for a minimal
clean-up of the sample (see CDF Note 6808) - Optimization of S/?B for jet multiplicity gt6 and
for the following quantities (see CDF Note 6808)
with these results - ?Et ? 320 GeV
- ?Et/?s (centrality) ? 0.77
- (Aplanarity 0.0037 x ?3Et) ? 0.85
3Summary table of kinematical selection using at
least 6 jets
Cut ttbar evt (165 pb-1) MJ evt Eff.() (inclusive ttbar) S/B
Pre-requisites 631 1134030 54.7 1/2000
6 ? Njet ? 8 244 83219 22.0 1/340
(Apla0.0037x?3Et)?0.85 97 4221 8.7 1/43
Centrality gt 0.77 72.0 1930 6.5 1/26
SumEt gt 320 GeV 69.0 1237 6.3 1/23
4Systematics on the kin. selection
Source what ??/? ()
Fragmentation HERWIG vs PYTHIA 1
ISR modeling PYTHIA vs PY.noISR 13
FSR modeling PYTHIA vs PY.noFSR 5
Energy scale Change by ? 1? 26
Total All contributions 30
?incl (6.3 ? 0.04 (stat) ? 1.9 (syst))
5Secondary Vertices (btags) .
- We use SECVTX (Summer 2003) in a method 1 line
approach - define a tag rate and a parametrization which can
provide a bgr estimate - compare positive OBServed tags to EXPected tags
from the tag rate parametrization - We do so before the application of any
kinematical selection and derive a systematic
uncertainty on the bgr evaluation - Finally we apply a tight kinematical selection
and look for an excess of tags w.r.t. the bgr as
expected from top
6Tag Rate vs Et, Eta, Ntrk and Apla
Eta 3 bins
Et 8 bins
Ntrk 11 bins
Apla 8 bins
7Summary table for the parametrization (8?11?3?3)
4 jets 5 jets 6 jets ? 7 jets
Events 532634 249573 66807 15599
Taggable jets 1274233 742349 238532 67039
OBS ( tags) 38421 21313 6680 1708
EXP ( tags) 38421?191 21150?116 6524?46 1733.5?18
Nobs-Nexp/Nexp() 0 ? 0.8 0.3 ? 0.9 2.3 ? 1.4 -1.4 ? 2.6
8(OBS EXP) / EXP vs Jet Multiplicity
- If we plot the ratio
-
- (OBS EXP) / EXP
- as a function of the jet
- multiplicity ( for 4, 5, 6 or ? 7)
- Tags EXP is consistent with OBS
9Systematics uncertainties on the bgr estimate
- Different control samples
- pick events with the SMALLEST possible presence
of ttbar events - highly populated
- Three cases
- 2 with reverse cuts
- 1 check stability
10Systematics on Njet
- If we compare OBS and EXP for Njet ? 6,
- (Apla0.0037x?3Et) ? 0.85, Centrality ? 0.77 and
?Et ? 320 GeV we - see that
- Nobs 3542
- Nexp 3550 ? 47
- (Nobs Nexp)/Nexp (0.2 ? 0.1)
-
- ? We consider a systematic uncertainty on Njet
0.2
11Systematics on ?Et,
We consider all events with 5 jets and
(Apla0.0037x?3Et) ? 0.85, Centrality ? 0.77.
Systs. on ?Et 1.4
1.6
ALLOW SLOPE
0.6
CONVOLUTION
12 on (Apla0.0037x?3Et) and on Centr.
Syst. (Apla0.0037x?3Et) 4.7
Syst. Centr. 0.3
1.2
1.4
0.8
0.6
13Systematics on Inst.Luminosity,
- We consider as a
- control sample
- all events with 4 jets.
- Syst. Inst. Lum. ltlt 1
14 on Run and on jet-?
Syst. Run ltlt 1
Syst. jet-? ltlt 1
15Total Systematic uncertainty
- We now combine all systematics (sum in
quadrature) - Njet 0.2
- SumEt 1.4
- Centrality 0.3
- (Apla0.0037x?3Et) 4.7
- Inst. Luminosity ltlt 1.0
- Run ltlt 1.0
- Jet-? ltlt 1.0
- Total systematic uncertainty 5
16Background estimate after KIN SEL
4 jets 5 jets 6 jets ? 7 jets
Events 60 420 773 883
EXP () 7.9?0.4?0.4 62.9?1.4?3.1 126 ? 2 ? 6 152 ? 2 ? 7.6
OBS () 11 70 170 156
Nobs- Nexp 3.1 ? 0.6 7.1 ? 3.4 44 ? 6 4 ? 8
17 some preliminary results
- For Njet ? 6 jets
- (SIGNAL REGION) we see
- Nobs 326 tags
- Nexp(bgr) 278.0 ? 2.8 (stat)
- ? 13.9(syst) tags
-
- ? NobsNexp 48.0 ? 14.0 tags
18Btagging Efficiency
- We can follow two methods
- factorization method where
- ?overall,evbtag ? evt btag (1 - ?evt
btag) ? ?evt mistag - with ? evt btag F2b ? ?btag ? SF ? (2- ?btag ?
SF) F1b ? ?btag ? SF - and SF 0.86 ? 0.07.
- We have done a cross-check with the single lepton
analysis - (following CDF Note 6598)
- counting method where we degrade the tagged jets
with the SF - If we compare the two methods they give
consistent results.
19Btagging efficiency per event and per jet
Njet ?evtbtag()
4j 53.1 ? 3.5
5j 53.6 ? 3.5
6j 54.7 ? 3.5
gt6j 54.9 ? 3.5
gt6jkin 59.3 ? 3.7
Njet ?jetbtag ()
4j 63.5 ? 5.1
5j 64.4 ? 5.2
6j 66.6 ? 5.5
gt6j 66.6 ? 5.5
gt6jkin 73.7 ? 6.0
Eff. b-evt (59.3 ? 3.7)
Eff. b-jet (73.7 ? 6.0)
If NO matching with b-jet Eff. jet (83.7 ?
8.2)
20Efficiencies plot
21Cross Section
- The presence of tt events in the pretag sample
leads to an - overestimate of the background. We account for
it with an - iterative procedure and then we rescale the
background - Nexp Nexp ? ((N Ntt) / N)pretag 266.1
- and the corrected excess would be
- Nobs- Nexp 326 266.1 60
22Final summary table
4 jets 5 jets 6 jets ? 7 jets
Events 60 420 773 883
Backg. 7.9?0.4?0.4 62.9?1.4?3.1 126 ? 2 ? 6 152 ? 2 ? 7.6
Backg. corrected 266.1 ? 16.7 266.1 ? 16.7
Top MC (6.7 pb) 0.3 ? 0.1 6.5 ? 2.0 51.3 ? 15.9 51.3 ? 15.9
Tags Expected 8.2 69.4 317.4
OBS () 11 70 170 156
23- We build the following likelihood function
with the following input values
Lumin L 165-10 pb-1
Obs tags n 326
Exp tags b 278-14
Exp tags corr b 266.1-16.7
Kin eff. ek 6.3-1.9
Tag eff. eb 83.7-8.2
bb(N-Ntt)/N Npretag events Nttpretag tt
events
24- The maximization of the likelihood gives, as
central value
- The cross section (iterative) amounts to
25Conclusions
- First full pass with Run I method top cross
- section.
- To do next
-
- brush up the systematic especially jet energy
scale and state of the cut PSR, FSR and PDF - Seek preblessing next March
26Kinematic cuts optimization Apla vs ?3Et
We reject the bottom left corner. By cutting on
Aplanarity K x ?3Et. We pick up the best value
for k and look for the maximum of S/?B
mj
Aplanarity
tt
Projection
SumEt3
Optimization
27Kinematic cuts optimization Centrality
After the cut (Aplanarity 0.0037 x ?3Et) ? 0.85
we find the best value to cut on the Centrality
S/B
mj
S/?B
28Kinematic cuts optimization ?Et
After the cut (Aplanarity 0.0037 x ?3Et) ? 0.85
and Centrality ? 0.77 we find the best value to
cut on ?Et
S/B
tt
mj
S/?B
29Parametrization using matrix of Jet50
- As a cross-check , we apply the matrix of Jet50
on our data - sample even if it is not much appropriate
because - it comes from a sample with 2 jets and low SumEt
and we use a data with at least 6 jets at higher
SumEt - the statistic of the Jet50 sample is very small
in our signal region - and this is reflected in the bigger
Nobs-Nexp/Nexp
4 jets 5 jets 6 jets ? 7 jets
Nobs-Nexp/Nexp() 4.0 ? 0.7 4.7 ? 0.9 7.0 ? 1.4 4.6 ? 1.5
30Negative Tags before and after kin. sel.
4 jets 5 jets 6 jets ? 7 jets
OBS (- tags) 9774 5593 1745 515
EXP (- tags) 9774?98 5232?58 1593?23 420?9
OBSEXP/EXP() - 7 9 22
EXP(JET50) (-tags) 10508?107 5715?72 1748?26 462?9
4 jets 5 jets 6 jets ? 7 jets
OBS (- tags) 5 15 42 52
EXP (- tags) 3 ? 0.4 18.1 ? 0.6 34.4 ? 1.0 39 ? 1.0
EXP(JET50) (-tags) 3.4?0.2 21.4?0.8 39.2?1.0 44.1?1.3
31Cross Check with matrix from Jet50
32Systematics on ?Et, Centr and (Apla0.0037x?3Et)
- for events passing the kin. sel., we drop the 6th
jet and reconstruct new ?Et, Centr and
(Apla0.0037x?3Et) distributions (6-to-5,,
distributions) - in the corresponding control sample we fit the
distributions of the Nobs/Nexp ratio with a first
degree polynomial - convolute the polynomial function with the
corresponding 6-to-5,, normalized distribution - the integral of the convolution gives the total
systematic uncertainty