Haskell in Motion An Introduction to FRP - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

Haskell in Motion An Introduction to FRP

Description:

Is: a collection of Haskell data types and functions. 3/23/2001 ... High-level, declarative. Concise code. Executable spec [new!] Time is continuous. 3/23/2001 ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 35
Provided by: Zhanyo1
Category:

less

Transcript and Presenter's Notes

Title: Haskell in Motion An Introduction to FRP


1
Haskell in Motion An Introduction to FRP
  • Zhanyong Wan, Yale University
  • 3/23/2001

2
What Is FRP
  • A Domain-Specific Language
  • Not general-purpose
  • For hybrid reactive systems
  • Embedded in Haskell
  • Isnt compiled by a compiler written in Haskell
  • Isnt compiled into Haskell
  • Is a collection of Haskell data types and
    functions

3
General-Purpose vs. Domain-Specific
  • General-purpose programming languages
  • Want to solve all problems in one framework
  • Have to make trade-offs when designing the
    language
  • Expressiveness vs. Efficiency
  • Do not possess domain knowledge
  • Can not always make the right trade-offs
  • Not abstract enough
  • Not optimized for the domain

4
Writing Animation in GP Languages
  • Sketch of the code (taken from Elliotts Fran
    manual)
  • allocate and initialize window, various drawing
    surfaces and bitmaps
  • repeat until quit
  • get time ( t )
  • clear back buffer
  • for each sprite (back to front)
  • compute position, scale, etc. at t
  • draw to back buffer
  • flip back buffer to the screen
  • deallocate bitmaps, drawing surfaces, window
  • Lots of tedious, low-level code that you have to
    write yourself
  • A better way exists!

5
Domain-Specific Languages
  • DSLs
  • Not intended to be general-purpose
  • Aimed at solving problems in a particular domain
  • Why DSLs?
  • Designed with the problem domain in mind
  • Capture the right abstraction
  • Let the programmer concentrate on the problem,
    not low-level details
  • Examples
  • HTML, SQL, Shell in UNIX, Perl, Prolog

6
Domain-Specific Languages (contd)
  • Haskell as the vehicle for DSLs
  • Flexible syntax
  • User-defined operators, infix usage of functions
  • Powerful type system
  • Higher-order
  • Control structures
  • Referentially transparent imperative programming
    via monads
  • Polymorphic
  • Abstract code
  • Reusable
  • Declarative
  • Quick prototyping
  • Good for testing new language constructs and
    design ideas
  • Embedded DSL inherits Haskells syntax and type
    system

7
Reactive Programming
  • Reactive systems
  • Continuously react to stimuli
  • Environment cannot wait
  • Conceptually, values can change over continuous
    time
  • Examples
  • Interactive animation
  • GUI
  • Robotics
  • Control systems
  • Traditional languages do a poor job
  • Discrete sampling
  • The animation example

8
Benefits of FRP
  • High-level, declarative
  • Concise code
  • Executable spec
  • new! Time is continuous

9
What Is FRP Good for?
  • Applications of FRP
  • Fran Elliott and Hudak Interactive animation
  • Frob Peterson, Hager, Hudak and Elliott
    Robotics
  • FVision Reid, Peterson, Hudak and Hager Vision
  • Frappé Courtney Java
  • FranTk Sage GUI

moveXY (sin timeB) 0 charlotte charlotte
importBitmap charlotte.bmp
10
Essential Haskell Features Used
  • Higher-order functions
  • Lazy streams
  • Infix operators
  • Type classes
  • Multi-parameter type classes
  • Functional dependency
  • IO monad
  • Interaction with the environment
  • Memoization
  • Monads
  • Tasks

11
Using FRP
  • Resources
  • http//haskell.org/frp
  • Manual http//haskell.org/frp/manual.html
  • How to use
  • In the Zoo
  • /usr/local/bin/rugs
  • /usr/local/hugs/frp/
  • /usr/local/hugs/frob/
  • At home
  • Copy the files from Zoo
  • On Linux rugs
  • On Windows hugs -98

12
Basic Concepts
  • Behaviors (Behavior i a)
  • Reactive, continuous-time-varying values
  • timeB Behavior i Time
  • mouseB GuiInput i gt Behavior i Point2
  • Events (Event i a)
  • Streams of discrete event occurrences
  • lbpE GuiInput i gt Event i ()
  • Switching
  • b1 till lbpE -gt b2
  • Combinators
  • Behaviors and events are both first-class
  • Passed as arguments
  • Returned by functions
  • Composed using combinators

13
Behaviors
  • Time
  • timeB Behavior i Time
  • Input
  • mouseB GuiInput i gt Behavior i Point2
  • Integration
  • integralB Behavior i FRPReal
  • -gt Behavior i FRPReal
  • (integralB timeB)
  • Constant behaviors
  • lift0 a -gt Behavior i a
  • (lift0 5)

14
Lifting
  • Static value -gt behavior
  • lift0 a -gt Behavior i a
  • lift1 (a -gt b) -gt Behavior i a -gt Behavior i b
  • lift2 (a -gt b -gt c)
  • -gt Behavior i a -gt Behavior i b -gt Behavior
    i c
  • ...
  • Examples
  • lift1 sin timeB
  • lift2 () (lift0 1) (lift1 sin timeB)

time
time
15
Simplify the Syntax
  • Can we make lifting implicit?
  • lift2 () (lift0 1) (lift1 sin timeB)
  • gt 1 sin timeB
  • Sometimes, Yes!

16
Demo Simple Behaviors
demo
  • Hello, world!
  • hello Behavior i Picture
  • hello text lift0 "Hello, world!"
  • main1 animate hello
  • Interaction mouse-following
  • main2 animate moveTo mouseB hello
  • Time
  • main3 animate text lift1 show timeB

17
Geometry in FRP
  • 2-D
  • Points
  • Vectors
  • Common shapes
  • Circle, line, polygon, arc, and etc
  • Affine transformations
  • Rotation
  • Translation
  • Reflection
  • Scaling
  • Shear
  • Composition of the above
  • 3-D as well

18
Demo Spatial Transformations
demo
  • Spatial transformations -- dancing ball
  • ball Behavior i Picture
  • ball withColor red stretch 0.1 circle
  • wiggle, waggle
  • Behavior i FRPReal -gt Behavior i FRPReal
  • wiggle omega sin (omegatimeB)
  • waggle omega cos (omegatimeB)
  • main4 om1 om2 animate
  • moveXY (wiggle om1) (waggle om2)
  • moveTo mouseB ball

19
Demo Spatial Composition
demo
  • Spatial composition -- dancing ball text
  • main5 animate moveTo mouseB
  • moveXY (wiggle 4) (waggle 4) ball over
  • moveXY (wiggle 7) (waggle 3) hello

20
Demo Recursive Behaviors
  • Damped motion of a mass dragged with a spring
  • Integral equations
  • Recursive

d pm po a ksd kfv v ? a dt po ? v dt
d
pm
v
po
ks d
-kf v
21
Demo Recursive Behaviors (contd)
demo
  • FRP Code
  • moveTo po ball
  • where
  • ks 1
  • kf 0.8
  • d mouseB .-. po
  • a ks d kf v
  • v integralB a
  • po vector2ToPoint2 integralB v
  • Declarative
  • Concise
  • Recursive

d pm po a ksd kfv v ? a dt po ? v dt
22
Events
  • User events
  • lbpE GuiInput i gt Event i ()
  • Predicate events
  • whenE Behavior i Bool -gt Event i ()
  • Trivial events
  • neverE Event i a

23
Events (contd)
  • Composite events
  • (..) Event i a -gt Event i a -gt Event i a
  • bothE Event i a -gt Event i b -gt Event i
    (a,b)
  • filterE Event i a -gt (a -gt Bool) -gt Event i a
  • (gt) Event i a -gt (a -gt b) -gt Event i b
  • (-gt) Event i a -gt b -gt Event i b
  • e -gt b e gt const b
  • onceE Event i a -gt Event i a
  • accumE a -gt Event i (a-gta) -gt Event i a
  • snapshotE Event i a -gt Behavior i b
  • -gt Event i (a,b)

24
Switching
  • Mode switching
  • A common pattern in reactive systems
  • Till
  • till Behavior i a -gt Event i (Behavior i a)
  • -gt Behavior i a
  • Switch
  • switch Behavior i a -gt Event i (Behavior i a)
  • -gt Behavior i a
  • Higher-order events
  • Event algebra

25
Demo Switching
demo
  • Switching of behaviors
  • color GuiInput i gt Behavior i Color
  • color red till lbpE -gt blue
  • mouseBall GuiInput i gt Behavior i Picture
  • mouseBall moveTo mouseB stretch 0.5 circle
  • main7 animate withColor color mouseBall
  • Recursive switching
  • cycle3 c1 c2 c3 c1 till lbpE
  • -gt cycle3 c2 c3 c1
  • main8 animate
  • withColor (cycle3 red green blue) mouseBall

26
Demo Event Merging
demo
  • Making choices
  • main9 animate
  • withColor (green switch
  • (lbpE -gt blue .. rbpE -gt red))
  • mouseBall
  • Higher-order events help

27
Other Demos
demo
  • Paddle ball
  • Simulates robots
  • Large
  • 100 pure FRP

28
Inside Haskell the Numeric
demo
  • Case study
  • f Int -gt Bool
  • g Double -gt Bool
  • f 5 -- well-typed
  • g 5 -- well-typed
  • f 5.6 -- ill-typed!
  • g 5.6 -- well-typed
  • How does this work?
  • 5 ?
  • 5.6 ?
  • No C/Java style implicit coercion in Haskell
  • 5 Int ?
  • 5 Double ?

29
Inside Haskell the Numeric (contd)
  • Numbers are polymorphic!
  • 5 Num a gt a
  • 5.6 Fractional a gt a
  • Numeric operators are polymorphic too
  • () Num a gt a -gt a -gt a
  • sin Floating a gt a -gt a
  • Numeric classes
  • class Num a
  • class Num a gt Fractional a
  • class Fractional a gt Floating a
  • instance Num Int/Integer/Float/Double/
    ...
  • instance Fractional Float/Double/...
  • instance Floating Float/Double/...

30
How Does This Work?
  • Numbers are polymorphic
  • 5 Num a gt a
  • Haskells open-world assumption
  • always possible to add new instances to a class
  • Numeric literals must work for new Num instances!
  • Binary numbers
  • data Bit Zero One
  • newtype Bin Bin Bit
  • instance Num Bin
  • Should accept 5 where a Bin is expected!
  • But how?

31
Inside Haskell the Numeric (contd)
demo
  • Haskell treats numbers in a special way
  • 5 is shorthand for fromInteger 5
  • 5.6 is shorthand for fromRational 5.6
  • And so on
  • Implementing Bin
  • instance Num Bin where
  • ...
  • fromInteger 0 Bin Zero
  • fromInteger 1 Bin One
  • fromInteger n
  • n lt 0
  • error "Bin negative number not
    supported."
  • fromInteger n Bin (bits bit) where
  • Bin bits fromInteger (n div 2)
  • Bin bit fromInteger (n mod 2)

32
Simplify Lifting Syntax
  • Numeric literals lift themselves
  • instance Num a gt Num (Behavior i a) where
  • fromInteger lift0 . fromInteger
  • instance Fractional a gt Fractional (Behavior i
    a) where
  • fromRational lift0 . fromRational
  • Numeric operators lift themselves too
  • instance Num a gt Num (Behavior i a) where
  • () lift2 ()
  • instance Floating a gt Floating (Behavior i a)
    where
  • sin lift1 sin
  • Now possible
  • lift2 () (lift0 1) (lift1 sin timeB)
  • gt 1 sin timeB

33
Overloading Not Always Possible
  • Built-in operators/functions
  • () Eq a gt a -gt a -gt Bool
  • Lifted
  • () Eq a gt
  • Behavior i a -gt Behavior i a -gt Bool
  • Not
  • () Eq a gt
  • Behavior i a -gt Behavior i a -gt Behavior i
    Bool
  • The -suffix convention
  • () Eq a gt
  • Behavior i a -gt Behavior i a -gt Behavior i
    Bool
  • User-defined operators/functions
  • Polymorphic definition
  • Explicit lifting

34
End of Lecture
  • Slides available at
  • http//haskell.org/frp/frp-intro.ppt
Write a Comment
User Comments (0)
About PowerShow.com