Title: PLUTO: a modular code for computational astrophysics
1PLUTOa modular code for computational
astrophysics
- Developers A. Mignone1,2, G. Bodo2
- 1 The University of Chicago, ASC FLASH Center
- 2 INAF Osseratorio Astronomico di Torino
- 3 Universita degli studi di Torino
- 4 Universita degli studi di Firenze
C. Zanni3, T. Laverne2 , F. Rubini4, S.
Massaglia3, A. Rogava3, A. Ferrari3
2OUTLINE
- Written in C ( 33,000 lines)
- Explicit, compressible code (FV)
- Shock capturing
- High-mach number flows
- Works in 1, 2, 3-D
- Modular structure
- Physics
- Time stepping
- Interpolations
- Riemann Solvers
- No AMR
- Geometry support (Cart, Cyl, Spher)
- Serial/Parallel Implementation (MPI)
3Requirements
- (ANSI) C compiler
- Python (v. gt 1.6)
- GNU Make
Optional
- MPI (arraylib by A. Malagoli)
- GD graphics library
4PLUTO Fundamentals
PHYSICS Modules
TIME_STEPPING
Geometry\ Grid Generation
5Source Tree
Update
Un
Un1
Sources
Interpolation
physics modules
6Hydrodynamics (HD) Module
Eos
7Relativistic Hydrodynamics (RHD) Module
- Multi dimensional PPM, full corner coupled
transport (Colella 1990) - Nonlinear Riemann solver w/ general Eos (Mignone
et al. submitted to ApJ), ? FLASH Code
8Magnetohydrodynamics (MHD) Module
- Monopole Control
- Powell (Powell 94)
- Monopole Diffusion (Marder 87)
- Flux CT (Balsara 2004)
- Splitting of Magnetic Field, B B0(x) B1(x,t)
suitable for low-? plasma.
9Relativistic Magnetohydrodynamics (RMHD) Module
- Shares Features w/ MHD and RHD
10Algorithms
Time Stepping
HD RHD MHD RMHD
- Fwd Euler (Split/Unsplit)
- RK 2nd (Split/Unsplit)
- RK 3rd (Split/Unsplit)
- Hancock (Split/CTU)
- Characteristic Tracing (Split/CTU)
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?(split)
? ? ? ?(split) ?
Riemann Solvers
- Riemann (non-linear)
- TVD/ROE
- HLL
- TVDLF
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
?
Interpolation
- Prim. TVD-limited (II order)
- Characteristic TVD-limited
- Piecewise-Parabolic
- Multi-D Linear Interpolation
- 2nd and 3rd order WENO
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
11Additional Features
- Particles (T. Laverne)
- Optically thin radiative losses
- power-law ?2T? ? (Analytic integrator)
-
- Interstellar cooling function
-
- T gt 104 K, Dalgarno McCray Cooling (1972)
- T lt 104 K, NEQ (H H2) (Oliva, 1992)
-
-
- NEQ cooling function for shocks lt 80 Km/s
- (Raymond 1987)
- Implicit Thermal Conduction (1-D only)
Explicit /Implicit 2nd order integrators
12Problem Setup
- Python Interface
- definitions.h
- makefile
- User
- 3. init.c
- Set initial conditions
- userdef b. c.
- Bckgr. B
- Gravity
- 4. pluto.ini
- CFL
- Domain
- output freq.
13Test Gallery
2-D Riemann Problem (HD)
2-D Riemann Problem (RHD)
Shock-Cloud Interaction(MHD)
RMHD Blast Wave
14Applications
Axisymmetric MHD Jet Mach 50 ? 1 ?in/?out
1/20
Keplerian Disk (Murante et al. 2004) Vortex-wave
generation
3D RHD Jet (Rossi et at. 2003) Mach3 ?
10 ?in/?out 1.e-4
2D RHD KH V 0.95c M 1.17
15More Applications
Thermally unstable radiative shocks (Mignone,
submitted to ApJ)
Accretion Column onto white dwarf
16Summary
- Simple, fast code for single/multi proc.
- User-friendly
- versatile
- suitable for algorithm comparison
- (fairly) well documented
gtgt Official release Feb 2005 ltlt
mignone_at_oddjob.uchicago.edu, bodo_at_to.astro.it