Title: MODELING OF DISCRETE FRACTURE NETWORK USING VORONOI GRID SYSTEM
1MODELING OF DISCRETE FRACTURE NETWORK USING
VORONOI GRID SYSTEM
2Dual Porosity Model
- Highly fractured
- Connected fractures
- No flow occurs between matrix blocks
- Limitations
- Not applicable to disconnected fractured media
- Not suitable to model a small number of fractures
3Discrete Fracture Network (DFN)
- Isolated Fractures
- Disconnected Fractures
4Discrete Fracture Network (DFN)
- Fractures are represented individually
- Complex fractured porous media
Matrix
Fracture
Difficult to be modeled with conventional
rectangular grid system
5Geometrical Discretization -
SPE 79699
Using a Cartesian discretization
Number of Grids/Nodes gtgtgt
6Fracture Network Delaunay Triangulation
SPE 79699
7Where are we now ?
MODELING OF DISCRETE FRACTURE NETWORK USING
VORONOI GRID SYSTEM
8MODELING OF DISCRETE FRACTURE NETWORK USING
VORONOI GRID SYSTEM
Three Modules
- Preprocessor
- - grid generation module (voronoi)
- - fracture network
- - connectivity
- Processor
- Black Oil (IMPES/IMPIS)
- Postprocessor
- - visualization
60
40
0
9Preprocessor
- Grid Generation (VORONOI)
- Conventional rectangular grid system
- Hexagonal grid system
- Radial grid system
Grid Refinement rectangular hexagonal radial
random
10Voronoi Grid
Distribute points inside boundary Delaunay
Triangulation Voronoi
11What are Delaunay Triangulation Voronoi Grid ?
12Example Delaunay Triangulation
13Delaunay Triangulation Voronoi Diagram
14Voronoi Grid Refinement
Delaunay edge
Voronoi edge
15Conventional Rectangular Grid System
16Hexagonal Grid Model
17Conventional Grid Modelwith Grid refinement Near
Wells
18Flexible Grid Model Rectangular Hexagonal and
radial
19Voronoi Diagram Randomly distributed points
100 cells
20Voronoi Diagram Connection
90 cells - 462 connections
21Voronoi with 500 Cells 2766 connections
22Modeling Fracture Network using voronoi
Single Fracture
Fracture Set 1
23Modeling Fracture Network using voronoi
Multiple Fracture
Fracture Set 2
Fracture Set 4
Fracture Set 1
Fracture Set 3
24Modeling Fracture Network using voronoi
Geometrical domain
Computational domain
matrix
Flow connection
fracture
matrix
matrix
No Flow connection
Flow Connection
w
w fracture width
25Voronoi with complex fracture network
645 - 2945 connection
26Voronoi with complex fracture network
27(No Transcript)
28Processor Black Oil, 3P
- Cubic Law ? fracture
-
- Darcys Law ? matrix
- Data Structure (Template)
- Static Data not recoded for every time step
-
- Dynamic Data recorded for every time step
29Static Data
ID WIDTH PERM ROUGHNESS RELPERM_AND_Pc_ID PVT_ID
ID/NAME STATUS (ACTIVE/INACTIVE) GEOM
X,Y,Z CONNE FRACT/NOT_FRACT
TRANS_MULT AREA, H VOLUME
ID MODEL VOLUME ROCK_PROP
ROCK_PROP kL kV POR
RELPERM_AND_Pc_ID PVT_ID PVMOD
30Dynamic Data
ID LOCATION ID Cells (COMPLETION)
or X,Y,Z TYPE PROD/INJ CONSTRAINS
INTERVAL t_start
t_End PWF (min, max) DRD (min,max)
O,G,W RATE (min,max) GOR,WOR (min,max)
Po (ID,time) Pw (ID,time) Pg (ID,time)
So (ID,time) Sw (ID,time) Sg (ID,time)
ko (ID,time) kw (ID,time) kg (ID,time)
31Challenges
- Complex Fracture Network
- Connectivity
- Fully implicit finite difference or Stabilized
IMPES formulation ?? - Sparse matrix solver to solve linear equations
(no restriction) - BiCGSTAB ORTHOMIN - (we will not have a banded matrix form)
- Computation time ???