Construction and Application of Extended Ionic Models' - PowerPoint PPT Presentation

1 / 67
About This Presentation
Title:

Construction and Application of Extended Ionic Models'

Description:

multipole moments {mi,qi}. Retain physical meaning. An oxide - Li2O. super-ionic conductor. ... Construct 'extended' ionic models. Parameters from electronic ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 68
Provided by: mwil46
Category:

less

Transcript and Presenter's Notes

Title: Construction and Application of Extended Ionic Models'


1
Construction and Application of Extended Ionic
Models.
  • Mark Wilson

CECAM 17.10.05
2
Introduction.
  • Develop simple ionic models.
  • Allows long time- and length-scales.
  • Move from responsive to predictive mode.

3
Background.
  • Ionic materials.
  • strong environmental dependence.
  • many-body effects significant.
  • Predictive models require
  • transferable
  • physically-transparent
  • computationally-tractable.

4
Outline.
  • Extended ionic models.
  • Obtaining potential parameters.
  • well-directed ab initio
  • force-fitting.
  • Example simulations
  • filling carbon nanotubes
  • oxides (Li2O).

5
Extended Ionic Models.
  • Start from the pair potential
  • Extend as required.
  • polarizable-ion model (PIM).

- induced moments.
  • anisotropic-ion model (AIM)

- ions change in size and shape.
6
Obtaining Parameters.
  • Electronic structure calcs.
  • HF, MP2, DFT
  • Well-directed - derive specific parameters.
  • Force-fitting - derive all together.
  • Establish physically transparent relations.

7
Obtaining Parameters.
  • Electronic structure calcs.
  • HF, MP2, DFT

Well-directed
Force-fitting
Specific parameters
All parameters together
  • Establish physically transparent relations.

8
Example polarizabilities.
9
Example polarizabilities.
10
(No Transcript)
11
Induced Dipoles.
12
Induced Dipoles.
13
Dipolar distortions Cation identity change.
14
Quadrupolar distortion.
Dipolar distortions at high pressure.
15
Force-fitting.
  • Obtain parameters together.
  • Density-functional calcs.
  • forces fi.
  • cell stresses h.
  • multipole moments mi,qi.
  • Retain physical meaning.

16
An oxide - Li2O.
  • super-ionic conductor.
  • oxides difficult.
  • full AIM required.

- force-fitting used.
  • phonons
  • Cp(T).

17
Dynamics.
18
An oxide - Li2O.
  • super-ionic conductor.
  • oxides difficult.
  • full AIM required.

- force-fitting used.
  • phonons
  • Cp(T).

19
Dynamics.
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
Li2O Static properties
A2C44/(C11-C12) D(C12-C44)
24
Experimental Observation.
  • Interpreted w.r.t wurtzite (bulk crystal).

Sloan et al, JACS, 124, 2116, 2002.
25
Inorganic nanotubes
26
Phase diagram
27
Filling Carbon Nanotubes
Sloan et al, Chem. Phys. Lett., 329,
61,2000 Meyer et al, Science, 289, 1324, 2000.
28
Filling Carbon Nanotubes - why?
  • Unique low-dimensional environment.
  • Potential applications
  • nanowires
  • nanomoulds (templates)
  • catalysis.
  • Ionic materials well-suited.

29
Filling Carbon Nanotubes - how?
  • Simple model.
  • pair-potential polarization
  • Lennard-Jones ion-carbon
  • carbon tube held rigid.
  • Observe direct filling.
  • Energy minimisations - Phase diagrams.

30
Filling with KI.
  • rocksalt (B1, 6-coordinate) bulk.
  • explains expt. HRTEM. (responsive)
  • predicts a filling mechanism.
  • explains why crystals form.
  • predicts new morphologies. (predictive)

31
Filling Mechanism.
32
Filling with KI.
- twisted crystals.
33
Why does the crystal form?
34
Why do twisted crystals form?
35
(No Transcript)
36
twisted crystal
Predicted HRTEM
37
Inorganic nanotubes
Blende
Rocksalt
38
Inorganic nanotubes
39
Inorganic nanotubes
40
INT morphologies.
41
INT morphologies.
42
INT morphologies.
43
INT morphologies.
44
(No Transcript)
45
(No Transcript)
46
Experimental Observation.
  • Interpreted w.r.t wurtzite (bulk crystal).
  • Equivalent to a (2,2).

47
(No Transcript)
48
Applied pressure.
49
Applied pressure.
50
Chiral Information Transfer ?
51
LaCl3 Insertion.
  • Effect of change in stoichiometry ?
  • Experiment ? non-space-filling.

52
(No Transcript)
53
(No Transcript)
54
screengrab_linettrace_lacl3_18_3_p2_11
For comparison my modelling from bulk LaI3
LaI3_my_model_comparison2
LaI3_my_model_comparison
55
(No Transcript)
56
An oxide - Al2O3.
  • intermediate ? Al.
  • complex T,p morphology.
  • pressure marker Cr3.

- force-fitting used.
  • study pressure transitions

57
(No Transcript)
58
ab initio calculations and experiments
corundum stable up to 100 GPa
Rh2O3(II), stable up to 220 GPa (?)
orthorhombic perovskite, high pressure phase
59
(No Transcript)
60
Al2O3 U-V curves of high pressure phases(static
and dynamic) from MD simulation
61
corundum
Rh2O3(II) structure
orthorhombic perovskite
62
Rh2O3-(II) ?corundum transformationtime
evolution of cell angles
63
Comparison to X-ray diffraction pattern
64
Summary.
  • Construct extended ionic models.
  • Parameters from electronic structure calcs.
  • Allows long time- and length-scales.

65
Thanks to .
  • Professor Paul Madden
  • Dr. Sandro Jahn
  • Dr. Steffi Friedrichs

66
Who does what ?
  • Dominik Daisenberger.
  • amorphous Si
  • Si clathrates.
  • Experiments (!)

67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
Who does what ?
  • Bevan Sharma
  • Potential model development
  • Intermediate-range order.
  • Crystal phase transitions.

72
(No Transcript)
73
ZnCl2
GeSe2
74
(No Transcript)
75
Who does what ?
  • Clare Bishop
  • Phase diagrams of models systems
  • Potential model development.
  • Filling carbon nanotubes.

76
Who does what ?
  • Numaan Ahmed
  • Models for longer length-scales.
  • Adapting force-fitting technologies.
  • Polymers and glasses.

77
Who does what ?
  • Hitesh Bhalla
  • Strontium chloride.
  • Effect of homopolar bonds.
Write a Comment
User Comments (0)
About PowerShow.com