Title: Construction and Application of Extended Ionic Models'
1Construction and Application of Extended Ionic
Models.
CECAM 17.10.05
2Introduction.
- Develop simple ionic models.
- Allows long time- and length-scales.
- Move from responsive to predictive mode.
3Background.
- strong environmental dependence.
- many-body effects significant.
- Predictive models require
- transferable
- physically-transparent
- computationally-tractable.
4Outline.
- Extended ionic models.
- Obtaining potential parameters.
- well-directed ab initio
- force-fitting.
- filling carbon nanotubes
- oxides (Li2O).
5Extended Ionic Models.
- Start from the pair potential
- polarizable-ion model (PIM).
- induced moments.
- anisotropic-ion model (AIM)
- ions change in size and shape.
6Obtaining Parameters.
- Electronic structure calcs.
- Well-directed - derive specific parameters.
- Force-fitting - derive all together.
- Establish physically transparent relations.
7Obtaining Parameters.
- Electronic structure calcs.
Well-directed
Force-fitting
Specific parameters
All parameters together
- Establish physically transparent relations.
8Example polarizabilities.
9Example polarizabilities.
10(No Transcript)
11Induced Dipoles.
12Induced Dipoles.
13Dipolar distortions Cation identity change.
14Quadrupolar distortion.
Dipolar distortions at high pressure.
15Force-fitting.
- Obtain parameters together.
- Density-functional calcs.
- forces fi.
- cell stresses h.
- multipole moments mi,qi.
16An oxide - Li2O.
- super-ionic conductor.
- oxides difficult.
- full AIM required.
- force-fitting used.
17Dynamics.
18An oxide - Li2O.
- super-ionic conductor.
- oxides difficult.
- full AIM required.
- force-fitting used.
19Dynamics.
20(No Transcript)
21(No Transcript)
22(No Transcript)
23Li2O Static properties
A2C44/(C11-C12) D(C12-C44)
24Experimental Observation.
- Interpreted w.r.t wurtzite (bulk crystal).
Sloan et al, JACS, 124, 2116, 2002.
25Inorganic nanotubes
26Phase diagram
27Filling Carbon Nanotubes
Sloan et al, Chem. Phys. Lett., 329,
61,2000 Meyer et al, Science, 289, 1324, 2000.
28Filling Carbon Nanotubes - why?
- Unique low-dimensional environment.
- nanowires
- nanomoulds (templates)
- catalysis.
- Ionic materials well-suited.
29Filling Carbon Nanotubes - how?
- pair-potential polarization
- Lennard-Jones ion-carbon
- carbon tube held rigid.
- Observe direct filling.
- Energy minimisations - Phase diagrams.
30Filling with KI.
- rocksalt (B1, 6-coordinate) bulk.
- explains expt. HRTEM. (responsive)
- predicts a filling mechanism.
- explains why crystals form.
- predicts new morphologies. (predictive)
31Filling Mechanism.
32Filling with KI.
- twisted crystals.
33Why does the crystal form?
34Why do twisted crystals form?
35(No Transcript)
36twisted crystal
Predicted HRTEM
37Inorganic nanotubes
Blende
Rocksalt
38Inorganic nanotubes
39Inorganic nanotubes
40INT morphologies.
41INT morphologies.
42INT morphologies.
43INT morphologies.
44(No Transcript)
45(No Transcript)
46Experimental Observation.
- Interpreted w.r.t wurtzite (bulk crystal).
- Equivalent to a (2,2).
47(No Transcript)
48Applied pressure.
49Applied pressure.
50Chiral Information Transfer ?
51LaCl3 Insertion.
- Effect of change in stoichiometry ?
- Experiment ? non-space-filling.
52(No Transcript)
53(No Transcript)
54screengrab_linettrace_lacl3_18_3_p2_11
For comparison my modelling from bulk LaI3
LaI3_my_model_comparison2
LaI3_my_model_comparison
55(No Transcript)
56An oxide - Al2O3.
- intermediate ? Al.
- complex T,p morphology.
- pressure marker Cr3.
- force-fitting used.
- study pressure transitions
57(No Transcript)
58ab initio calculations and experiments
corundum stable up to 100 GPa
Rh2O3(II), stable up to 220 GPa (?)
orthorhombic perovskite, high pressure phase
59(No Transcript)
60Al2O3 U-V curves of high pressure phases(static
and dynamic) from MD simulation
61corundum
Rh2O3(II) structure
orthorhombic perovskite
62Rh2O3-(II) ?corundum transformationtime
evolution of cell angles
63Comparison to X-ray diffraction pattern
64Summary.
- Construct extended ionic models.
- Parameters from electronic structure calcs.
- Allows long time- and length-scales.
65Thanks to .
- Professor Paul Madden
- Dr. Sandro Jahn
- Dr. Steffi Friedrichs
66Who does what ?
- amorphous Si
- Si clathrates.
- Experiments (!)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71Who does what ?
- Potential model development
- Intermediate-range order.
- Crystal phase transitions.
72(No Transcript)
73ZnCl2
GeSe2
74(No Transcript)
75Who does what ?
- Phase diagrams of models systems
- Potential model development.
- Filling carbon nanotubes.
76Who does what ?
- Models for longer length-scales.
- Adapting force-fitting technologies.
- Polymers and glasses.
77Who does what ?
- Strontium chloride.
- Effect of homopolar bonds.