Multi Dimensional signal proc' Lecture 3 5 - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Multi Dimensional signal proc' Lecture 3 5

Description:

1) Construct neighborhood graph. For each point: Find K neighbors and measure Euclidean distance ... Metode til at kombinere features til nye og f rre ... – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 32
Provided by: thomasm46
Category:

less

Transcript and Presenter's Notes

Title: Multi Dimensional signal proc' Lecture 3 5


1
Multi Dimensional signal proc. Lecture 35
  • Dimensionality reduction
  • Correlation between variables
  • Correlation vs. covariance
  • Methods to reduce the dimensionality
  • Multi-dimensional scaling
  • Isomap
  • Local linear embedding (LLE)
  • Presentation of students compression algorithms

2
Dimensionality reduction
  • Why?
  • The curse of dimensionality
  • Visualization
  • Remove noise (10 correlated variables 1
    uncorrelated)
  • Save processing time
  • Understand the data
  • How?
  • Variables/features are often correlated gt
    redundancy
  • How to measure correlation covariance matrix
  • Correlation vs. covariance

3
Covariance
4
Methods to reduce the dimensionality
  • Principal component analysis (PCA)
  • Multi-dimensional scaling (MDS)
  • Isomap
  • Local linear embedding (LLE)

5
Linear methods
  • Principal component analysis (PCA)
  • Find directions with large variance
  • Multi-dimensional scaling (MDS)
  • Keep interpoint distances

mapping
(note 12)
6
Multi-dimensional scaling (MDS)
7
Linear methods
  • What about data that cannot be described by a
    linear combination of variables?
  • Ex swiss roll, s-curve, the earth
  • In general manifolds
  • Linear methods fail
  • In the end, linear methods do nothing more than
    rotate/translate/scale data

PCA
8
Non-linear methods
  • Estimate the intrinsic structure
  • The manifold

9
Intuition how does your brain store these
pictures?
10
Computer Representation
11
Brain Representation
  • Every pixel?
  • Or perceptually meaningful structure?
  • Up-down pose
  • Left-right pose
  • Lighting direction
  • So, your brain successfully reduced the
    high-dimensional inputs to an intrinsically
    3-dimensional manifold!

12
Non-linear methods
  • Estimate the intrinsic structure (manifold)
  • Methods
  • Isomap
  • Local linear embedding (LLE)

13
Isomap
  • Isometric feature mapping
  • Same principle as MDS, but use geodesic distance
    instead of Euclidean distance
  • ( shortest distance along a manifold, eg. the
    Earth )
  • Algorithm
  • Find geodesic distance between all points
  • Use MDS to map to lower dimensional space

14
Isomap Algorithm
  • Find geodesic distance between all points
  • 1) Construct neighborhood graph
  • For each point Find K neighbors and measure
    Euclidean distance
  • Graph Each point a node. Each edge is a distance
    (weight)
  • 2) Compute shortest path between any two points
  • Graph theory. Dijkstras algorithm
  • 3) Use MDS to map to lower dimensional space

(note 3)
15
Isomap Examples
16
Isomap Example
  • 64X64 Input Images form
  • 4096-dimensional vectors
  • Intrinsically, three dimensions is enough for
    presentations Two pose parameters and azimuthal
    lighting angle

17
Data for Hands
18
Local linear embedding (LLE)
19
Local linear embedding (LLE)
  • We expect each data point and its neighbors to
    lie on (or close to) a locally linear patch of
    the manifold
  • This local linearity should also exist after the
    mapping

20
LLE Algorithm
  • Find neighbors for each point
  • Represent each point as a weighted combination of
    its neighbors
  • The weights are the same in the low dimensional
    space. Use this fact to do
  • the mapping

(note 4)
21
LLE examples
22
(No Transcript)
23
LLE examples
PCA
LLE
24
What to remember
  • Dimensionality reduction
  • The curse of dimensionality
  • Visualization
  • Remove noise (10 correlated variables 1
    uncorrelated)
  • Save processing time
  • Understand the data the intrinsic structure
  • How?
  • Variables/features are often correlated gt
    redundancy
  • Linear vs non-linear methods
  • Linear PCA, MDS,
  • Non-linear Isomap, LLE,
  • Isomap vs LLE
  • Different arguments
  • In general Isomap is applied
  • (slightly) more often
  • The end!

25
Xtras
26
Isomap Data for Handwritten 2
27
LLE Examples
28
Principal Component Analysis (PCA)
  • Metode til at kombinere features til nye og færre
  • PCA er meget brugt, specielt ved mange
    dimensioner
  • Grund tanke Features med stor varians adskiller
    klasserne bedst
  • Begge features har
  • stor varians hvad så ?
  • Transformere feature-rummet,
  • så vi opnår størst mulig varians
  • og ingen korrelation !
  • Varians Information !

29
PCA Transformationen
  • Ignorere y2 uden at miste information
  • ifbm. klassificering
  • y1 og y2 er de principale komponenter

30
PCA Hvordan gør man ?
  • Data (x)
  • Udregn covarians matricen Cx
  • Matlab Cx cov(x)
  • Løs Eigen-værdi problemet gt A og Cy
  • Matlab Evec,Eval eig(Cx)
  • Transformere x gt y y A (x-m)
  • Analyse (PCA)
  • M-metoden
  • Variabilitets mål fra SEPCOR
  • J-mål

31
Hvad skal I huske ?
  • Feature reduktion hvor vi ikke bruger klasse
    info
  • Unsupervised
  • Hierachical dimensionality reduction
  • Correlation matrix
  • Merge features eller smid nogle væk
  • Principal Component Analysis (PCA)
  • Kombineres til nye og færre features
  • VARIANCE INFORMATION
  • Transformere featurerummet udfra Eigen-vektorerne
    af covarians matricen gt ukorrelerede features !
  • Analyse
  • M-metoden (ingen klasse info.)
  • Bruge klasse info.
  • Variabilitets mål fra SEPCOR
  • J-mål
Write a Comment
User Comments (0)
About PowerShow.com