FIRST RESULTS FROM THE WMAP MISSION - PowerPoint PPT Presentation

1 / 84
About This Presentation
Title:

FIRST RESULTS FROM THE WMAP MISSION

Description:

FIRST RESULTS FROM THE WMAP MISSION – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 85
Provided by: brit67
Category:
Tags: first | from | mission | results | the | wmap | nark

less

Transcript and Presenter's Notes

Title: FIRST RESULTS FROM THE WMAP MISSION


1
(No Transcript)
2
FIRST RESULTS FROM THE WMAP MISSION
Wilkinson Microwave Anisotropy Probe
Chuck Bennett, WMAP P.I.
April 2, 2003 FERMILAB
3
Prof. David T. Wilkinson Wilkinson Microwave
Anisotropy Probe (WMAP)
4
WMAPs Purpose
  • To make a detailed full-sky map of the cosmic
    microwave background (CMB) radiation to constrain
    the cosmology of our universe.

5
WMAP Science Team

PRINCETON U.
GODDARD
U. CHICAGO
Stephan Meyer
Charles Bennett, P.I. Robert Hill Gary Hinshaw Al
Kogut Michele Limon Nils Odegard Janet
Weiland Edward Wollack
Chris Barnes Norman Jarosik Eiichiro
Komatsu Micheal Nolta Lyman Page Hiranya
Peiris David Spergel Licia Verde
UCLA
Edward Wright
U. BRIT COLUMBIA
Mark Halpern
BROWN U.
Greg Tucker
6
(No Transcript)
7
WMAP Launch
June 30, 2001 at 347 EDT Delta II Model
7425-10 Delta Launch Number 286 Star-48 third
stage motor Cape Canaveral Air Force Station Pad
SLC-17B
8
Trajectory to L2
9
WMAPs First 100 Days
10
Experimental ApproachMinimize Systematic
Measurement Errors
  • Differential design to minimize systematic errors
  • 5 microwave frequencies to understand foregrounds
  • 20 radiometers to allow multiple cross checks
  • Sensitivity to polarization
  • Accurate calibration (lt0.5)
  • ? in-flight calibration using modulation of the
    dipole
  • In-flight beam measurements on Jupiter
  • Minimize sidelobes diffracted signals from
    Earth, Sun, Moon
  • ? L2 orbit
  • Multiple modulation periods to identify
    systematic effects
  • Minimize all observatory changes
  • ? L2 orbit constant survey mode operations
  • Thermal stability / Passive thermal control ? L2
  • Rapid and complex sky scan
  • ?observe 30 of the sky in an hour

SPIN-SYNCHRONOUS NON-SKY SIGNALS WERE THE LEADING
CONCERN
11
Systematic Error Results
  • No corrections to the first year
  • WMAP data
  • were required for spin-synchronous
  • systematic errors

12
Differential Design
lines of sight
13
Scan Pattern
14
(No Transcript)
15
State-of-the-Art Microwave Receivers
10 Differencing Assemblies 4 _at_ 94 GHz W-band 2
_at_ 61 GHz V-band 2 _at_ 41 GHz Q-band 1 _at_ 33 GHz
Ka-band 1 _at_ 23 GHz K-band
16
Designed by M. Pospieszalski at NRAO
17
Feed Horn Arrangement in Focal Plane
  • View looking at feeds from secondary
  • Side A is y direction, Side B is -y direction
  • E-plane polarization shown for longitudinal OMT
    port (radiometer side 1)

18
Jupiter Beam Maps
B-side
A-side
19
(No Transcript)
20
K Band (23 GHz)
21
Ka Band (33 GHz)
22
Q Band (41 GHz)
23
V Band (61 GHz)
24
W Band (94 GHz)
25
Number of Observations/Pixel
26
Systematic Error Cross-Checks
(Q1Q2)/2
(Q1-Q2)/2
(V1-V2)/2
(V1V2)/2
(W12-W34)/2
(W12W34)/2
27
COBE-WMAP Comparison
COBE
WMAP
28
COBE-WMAP Comparison
COBE DMR 53 GHz
WMAP Q/V Combined (to approximate 53 GHz)
29
COBE-WMAP Comparison
Difference
Noise
30
3-Color Maps
Q band V band W band
Dipole- subtracted
31
Internal Linear Combination CMB
32
COBE-WMAP Comparison
33
Foreground Emission
Extinction Corrected Ha (White
Line t1)
Free-free from WMAP at K band
34
Synchrotron Emission
35
MAP Dust Foreground
FDS Model 8 at W band (94 GHz)
Temperature (µK)
400
15
15000
Dust Spectral Index
10000
Number of Pixels
5000
MAP Thermal Dust at W band (94 GHz)
0
1.5
2.0
1.8
2.2
2.6
2.4
2.8
Spectral Index (b)
36
3-Color Foregrounds at K Band (23 GHz)
Synchrotron Free-Free Thermal Dust
37
3-Color Foregrounds at Ka Band (33 GHz)
Synchrotron Free-Free Thermal Dust
38
3-Color Foregrounds at Q Band (41 GHz)
Synchrotron Free-Free Thermal Dust
39
3-Color Foregrounds at V Band (61 GHz)
Synchrotron Free-Free Thermal Dust
40
3-Color Foregrounds at W Band (94 GHz)
Synchrotron Free-Free Thermal Dust
41
3-Color Foregrounds
K band (23 GHz)
Ka band (33 GHz)
Q band (41 GHz)
V band (61 GHz)
Synchrotron Free-Free Thermal Dust
W band (94 GHz)
42
Best Fit Galactic Model
43
Full Sky Guide
WMAP-detected point sources ( brightest)
44
Foreground Spectra
45
(No Transcript)
46
Foreground Template Removal
47
CMB Anisotropy Power Spectra Dependence on
Cosmological Parameters
48
Power Spectrum
(220.10.8, 74.70.5 mK)
cosmic variance limited for llt354
S/Ngt1 for llt658
49
Power Spectrum
After Galactic Subtraction
Before Galactic Subtraction
50
Unbinned Low-l Power Spectrum
51
Correlation Function
52
Power Spectrum Previous CMB Measurements
Angular Scale (deg.)
l(l1)Cl/2P (mK2)
Multipole Moment l
53
Power Spectrum Previous CMB Measurements
Angular Scale (deg.)
l(l1)Cl/2P (mK2)
l(l1)Cl/2P (mK2)
Multipole Moment l
Multipole Moment l
Wang et al (2002) astro-ph/0212417
54
Power Spectrum Prediction from 2dF Group
Angular Scale (deg.)
l(l1)Cl/2P (mK2)
l(l1)Cl/2P (mK2)
Multipole Moment l
Percival et al 2002, MNRAS, 337, 1068
55
Temp x E-Polarization Power Spectrum
56
CMB Polarization
  • z20 reionization
  • scattering of CMB from free electrons
  • uniformly suppress lgt40 anisotropy by 30 (!)
  • Now detected
  • z1089 decoupling
  • scattering of CMB from electrons with non-random
    velocities
  • polarization correlates with temperature map
  • 1st detected by DASI, now have power spectrum
  • Gravity waves
  • Inflation-generated gravity waves polarize CMB
  • need CMBPOL

million years
57
Millions of Cosmological Simulations Later
58
Parameter Likelihood Functions
Cosmic Consistency!
59
MAP Measures the Shape of the Universe
Shape of the Universe
Wtot 1.02 0.02
60
Universal Content
WtotWbWcWL100
WmWbWc27 4
61
Dark Energy Equation of State
62
Limits on the Dark Energy Eqn of State
63
WL vs. Wm
64
Matter Fluctuations
65
Big Bang
  • Age 13.70.2 Gyr
  • Expansion rate km/s/Mpc
  • 7237 km/s/Mpc HST Freedman et al. (2001)
  • Baryon density
  • Wbh2 0.0224 0.0009
  • Wb 0.044 0.004
  • nb (2.50.1) x 10-7 cm-3

66
INFLATION
  • Flat Wtot1.020.02
  • ns1 WMAP data only ns0.990.04
  • All combined data ns0.960.02
  • (or
    )
  • Adiabatic isocurvature modes do not improve fit
  • Gaussian random phases -58ltfNLlt134 (95 CL)
  • TE anti-correlation velocities beyond horizon
    scale
  • Tensor-to-Scalar ratio rlt0.71 (95 CL)
  • (low gravity
    wave power)

67
1965
Penzias and Wilson
1992
COBE
2003
WMAP
68
http//lambda.gsfc.nasa.gov
69
(No Transcript)
70
Papers Based On WMAP Data
WMAP Team submitted 13 papers to Astrophysical
Journal 1st outside papers using WMAP data 36
hours after release gt75 new papers, and growing
rapidly
71
Summary
  • Results from 1-year survey
  • First detailed (0.2) full-sky CMB map
  • First detection of polarization from reionization
  • Reionization t0.170.04
  • First measurement of TE cross power spectrum
  • Newly observed anticorrelation is fresh evidence
    of inflation-like event
  • New limits on non-Gaussianity
  • -58 lt fNL lt 134 (95 CL)
  • Support for Big Bang
  • New support for Inflation
  • Beginning to distinguish specific Inflation
    models
  • Cosmic consistency, with new accurate set of
    numbers
  • Intriguing hints?
  • Very low anisotropy power gt60
  • Running spectral index
  • Bumps in power spectrum

72
Future?
  • More WMAP observations
  • More other CMB measurements
  • Other cosmological measurements (SN, SDSS,etc.)
  • Planck mission (Silk damping,SZ)
  • Gravity waves from inflation CMBPOL

73
THE END
74
Viewing the Decoupling Surface
  • Ratio of heights of 1st and 2nd peaks gives
    baryon density
  • Baryon density determines tdec3798 kyrs,
    zdec10891
  • Sound horizon ctdec (size of blobs)

Wbh20.02240.0009
-7
Decoupling surface
q0.598 0.002
WMAP
75

Inflation A Running Spectral Index?
COBE ns1.20.3
WMAPACBARCBI (MAPext) or WMAP2dF ns0.970.03
WMAP ns0.990.04
WMAPext2dFLya ns0.960.02
76
Temperature-Polarization Correlation
Radial pattern around cold spots Tangential
pattern around hot spots
Temperature quadrupole at z1089 generates
polarization
77
(No Transcript)
78
Future
  • More WMAP observations
  • Other CMB measurements
  • Ground, balloon, Planck, CMBPOL
  • Other cosmological measurements
  • SN, SDSS, lensing, etc.
  • Particle accelerators
  • Lightest supersymmetric particle?
  • Gravity waves (LISA, LIGO)
  • Exciting times ahead!

79
Best Cosmological Parameters Pg. 1
80
Best Cosmological Parameters Pg. 2
81
Reionization
  • Energy emitted from, e.g. early stars, reionizes
    the universe
  • Anisotropic scattering polarizes CMB
  • WMAP measures total optical depth, t, of
    electrons that scatter CMB
  • Ionization history theory can be matched against
    t
  • Get and

82
(No Transcript)
83
Total Power vs. Differential Radiometer
Total Power
Differential
symmetric differential common mode systematics
cancel rapid phase switching 2500 Hz chops
faster than gain instabilities pseudo-correlation
gain fluctuations are common to A and B and
cancel upon differencing.
  • Physical temperature changes affect output
  • Instabilities directly modulate the signal

Amplification
Detector
84
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com