Title: Definition 3: Trigonometric Functions: The Unit Circle 3'4
1Definition 3 Trigonometric FunctionsThe Unit
Circle3.4
- JMerrill, 2009
- Contributions from DDillon
2Recall Definitions of Trig Functions
- Definition 1 involved the ratios of 2 sides of a
triangle (SOH CAH TOA) - Definition 2 dealt with ratios using x- and
y-coordinates and the distance from the origin to
a point (using xs, ys, and rs)
3The Unit Circle
This circle has radius of 1. It is centered at
the origin. Endpoints are labeled as
(0,1)
(1, 0)
(-1, 0)
This is the standard that we use. All our
function values are based on this standard.
(0, -1)
4Definition 3 The Unit Circle
- Let (x, y) be any point on the unit circle. If ?
is the central angle that has the same measure as
the arc length from the point (1,0) along the
circumference to the point (x, y), then - The coordinates of the points along the unit
circle can be written (cos?, sin?).
5Trig Function Values of Quadrantal Angles
xs are cosines ys are sines
(0,1)
0
- sin 180º _____
- 2. cos 90º _____
- 3. cot 270º _____
- 4. tan 90º _____
- 5. csc _____
- 6. Sec _____
(1, 0)
(-1, 0)
0
0
undef
1
1
(0, -1)
6Recall 45-45-90 Triangles
In any 45-45-90 triangle, the sides are in the
ratio 1 1 v2.
sin 45 v2/2 cos 45 v2/2 tan 45 1
45
1
v2/2
v2/2
7The Unit Circle
8Recall 30-60-90 Triangles
In any 30-60-90 triangle, the sides are in the
ratio 1 2 v3
sin 60 v3/2 cos 60 1/2 tan 60 v3 sin
30 1/2 cos 30 v3/2 tan 30 v3/3
30
1
v3/2
1/2
9The Unit Circle
10Trig Function Values
v2/2
1/2
- sin 30º _______ 4. cos p/4 _______
- tan p/3 _______ 5. sec p/6 _______
- 3. sin p _______ 6. cot p/2 _______
v3
2v3/3
0
0