:, , throughput ' - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

:, , throughput '

Description:

??? ??????? ????? ????? ?? ????? ???????? ????? ????? ?? ??? ??? ?? ???? ??? ????? ?????. ????? ??? ... Due to this we need to recheck all inserted points in 5. ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 23
Provided by: cn06
Category:

less

Transcript and Presenter's Notes

Title: :, , throughput '


1
???? ??? ?????
  • ?? ???????? ????? ?????? ???????? ???? ?????
    ????? ???? ????? ????????

???? ???????? 4 ???? ??? ??? ?????? ??? ?????
????? ??????'?
??? ??????? ?? ????????
??? ??????? ????? ????? ?? ????? ???????? ?????
????? ?? ??? ??? ?? ???? ??? ????? ?????. ?????
??? ??????? ??? ?? ???? ??????? ???? ???????
?????. ???? ???? ????? ????? ?????? ??? ????? ???
???? ?? ??? ????????? ????? ??? ????? ???. ???
????? ????? ??? ?????? ?? ????????? ??? ?????
?????? ????????? ??????. ???????? ?? ????? ??????
?????????? ?"????" ???????? ???.
2
????? ????? ???????
  • ????? ?????????? ????? ?? ?? ???
    ????????????????, ????? ???????, throughput
    ????.
  • 1. Topology Interference Number ???? ??????? ??
    ???? ????, ??????? ?? ??? ????? ????? ??? ????
    ?????.
  • (??? ???? 2 ???? ???)
  • 2. ????? ??????? ?? ??? ????? ??????? ????
    ?????? ?????? ??? ??? ????? ???? ???? ?????
    ??????.
  • 3. ?????? ???? ???? ?? ??? ????? ???? ????? ??
    ??? ???? ???? ???? ??? ???? ???.
  • ???????? ?? ?????? ???? ???????? ?? ???????? ?
    alpha power spanner
  • ????? ?? ?????????? ????? ???????? ????? ???????
    ???? ??????? ???? ????? ????? ????? ???? ?-
    Topology Interference Number ????.
  • ???? ?????? ?? alpha power spanner ????? ?? ??
    ?????? ??????? ???????? ????? ????, ??- Topology
    interference number ???? ?????? ????? ???? ????
    ???? ?????? ???? ???.

3
t
w
v
r
u
4
Alpha Power Spanner
  • ????? alpha power spanner
  • ?????? V ???? ??????.
  • ???? ????? ??? ??? ????? u,v ????? ???
  • u-gtv ?? ??? ?? ??? w ????? ?- V\u,v
    ??????
  • ???? d(u,v) ???? ?? ????? ??? u ?- v .

??? u-gtv ???? ???? ?-alpha spanner ?? ??? ??
???? ?? ???? w ????? ????? ??????.
???? 1
5
??????? ???????
  • ?????? ?? ????????? ?- C.
  • ????? ???? ????? ???? Topology Interference
    Number ????? ????????, ???? ?????? ??? ????
    (????? ???????? ).
  • ????? ?? ?????? ????? ??? ?? N ?? (???? ??????
    ????).
  • ???? ?? N ?????? 5000 ????? ???? ????? ?? ??? ??
    ?????? ??????? ???? ?????? ????? ?? ??????? ???
    ???? ???? ??????? ???.
  • ??????? ???? ???????? ?????? ????? ?????????
    ????? ???
  • ????? ?????????? ???? ?????? ?????????? ??????
    ?? ????????? ?-
  • ??? ?? ????????? ?????? ???? ????? ??????. ??
    ???? ???? ?? ?????? ??? ?????.

6
????? ????????? ????
  • Distributed algorithm for links creation
  • Before the algorithm starts we have N random
    points (r,theta) on unit circle and every point
    has unsorted list L of these N points. The goal
    of this algorithm is creation of edges to
    neighbors for every point U.
  • for every point U do
  • 1 pass over list L and find point V with the
    shortest distance to U.
  • 2 () create edge U?V , and remove V from list
    L.
  • 3 pass over list L and remove all points that V
    eliminates
  • from being neighbors of U
  • //for every point W in list L do
  • // if dist(U,V)a dist(V,W)a lt dist(U,W)a
  • // remove W from list L. ( figure a)
  • 4 if list L is not empty return to 1, if
    empty sign that point U has no more edges.
  • 5 check if inserted edges are real edges of
    a-spanner
  • (()it is possible that redundant edges were
    inserted) (figure b)
  • // for every inserted point V in list of
    neighbors do
  • // pass over all N points and remove V if exists
    point that
  • // eliminates V from being a neighbor of
    U
  • // for every point W in list of all points
    do
  • // if dist(U,V)a gt dist(U,W)a dist(W,V)a
  • // remove V.

7
if dist(U,V)a dist(V,W)a lt dist(U,W)a remove
W from list L.
The problem of the redundant edges
U-gtW is a redundant edge because U-gtX-gtW is a
shorter path than U-gtW But we have already
eliminated X from the List L .
8
  • ()
  • Statement
  • If we look for a neighbor V for point U among
    group of points G, it is enough to find the point
    that is closest to U in this group.
  • Proof
  • Suppose we find a point V that is
    closest to U, and suppose that it cannot be a
    neighbor of U. Hence exists another point W that
    prevents V from being a neighbor of U.
  • therefore
  • dist(U,W)a dist(W,V)a lt dist(U,V)a
  • But according to the assumption V is the closest
    point to U therefore
  • dist(U,V) lt dist(U,W)
  • dist(U,V)a lt dist(U,W)a
  • If so we get
  • dist(U,W)a dist(W,V)a lt
    dist(U,V)a lt dist(U,W)a
  • dist(W,V)a lt 0
  • This can happen only if W and V are the same
    point.
  • Contradiction.
  • (figure d)

Assumption V is the closest point to U.
It is not possible that dist(U-gtV)a gtdist(
U-gtW)a dist(W-gtV)a
9
???????? ??? ?????? (????)
  • () in 3 we pass over list L and remove all
    points that V eliminates from being a neighbor of
    U, but these points that we have eliminated can
    themselves eliminate some other points that we
    will add in the future! Due to this we need to
    recheck all inserted points in 5.
  • Pay attention that the number of redundant points
    is very small and is also bounded (we checked it
    in our simulation ) so it does not affect the
    algorithms complexity.

10
?????? ?????????
  • Correctness
  • The Algorithm is correct because
  • 1) For every point U if some edge is supposed to
    be in a-spanner graph we will insert it.
    explanation we remove from the list L points
    that were eliminated by other points, so they can
    not be neighbors of U, and all points that
    were not removed from L after all iterations are
    candidates for being neighbors of U.
  • 2)We insert only edges that should be in
    a-spanner and also some redundant edges, and in
    the end we remove all redundant edges, so we get
    the correct a-spanner graph.

11
???????? ??? (????????)
  • Complexity
  • We checked in our simulation and saw that in the
    average case the number
  • of edges for every point is small and can be
    regarded as a constant.
  • Therefore ,in the algorithm for every point U,
    after a constant number of
  • steps the list L will be empty, and all edges
    will be inserted.
  • The Algorithm that every point U runs works as
    follows
  • In the average case
    const(O(N)O(1)O(N)O(1))O(N)) O(N)



  • edges part 1 part2 part3 part4
    part5
  • In the worst case the point can have all N-1
    edges, we will remove no point in paragraph 3,
    and list L will be empty after N-1 steps.(???? 3)
  • In the worst case (N-1)(O(N)O(1)O(N)O(1)O(N
    )) O(N2)
  • Hence the algorithm for all N points in the
    circle will work
  • In the average case O(N2)
  • In the worst case O(N3)

12
This is an example of the worst case scenario.
All N-1 points of the Graph have the same
distance to U so they are all neighbors of U . In
contrast in the average case the number of
neighbors is a constant.
???? 3
13
???????? (????)
  • In addition we can show that every algorithm for
    building a-spanner is bounded from below by
    O(N2). This is because we need to know for every
    node its distance from every other node in the
    graph.
  • Also there exists N2 edges and every algorithm
    will need to check at least all of the edges.
  • therefore this operation takes O(N2) actions.

14
???? ??????? ???????
Topology Interference Number ???? ??????
??????? ???? ??????? ??? ???? ????? ????. (???
???? 2 ?????? ???? ?????? ?????? ?? ?????).
15
???? ??????? ??????? (????)
  • Average Interference Number ???? ???? ???????
    ?? ?? ?????? ???? ???? ???? ?????? ????. ?????
    ???? ?? ??? ?? ??? ?? ???? ?????? ???? ?????? .
    ?????? ???? ?? ???? ?? ????? ???? ??????? ?????
    ?????? ????.

16
???? ??????? ??????? (????)
N runs till 300 Each time we ran our program For
100 times
  • Maximum Number of Links (for a Node) ?????
    ???????? ?? ????? ????????
  • ????? ?????? ????.(???? ?? ???? ??? ?????? ?????
    ?????? ?? ????? ???????? ????).

17
???? ??????? ??????? (????)
Average Number of Links for a Node ???? ?????
?? ????? ???????? ????? ?? ???? ????. ?????
?????? ?? ???? ?????? ???? ?? ?????? ???? ???????
????? ?????? ????.
18
???? ??????? ??????? (????)
Average redundant edges for a node ???? ?????
?? ????? ??????? ???? ??????? ?????????. ?????
???? ?? ???? ?? counter ????? ?? ???? ??????
???????? ?????? ????? ????? ??? ????? ??? ??.
?????? counter ?? ???? ?? ?????? ??????? ?????
???? ????.
19
???? ??????? ??????? (????)
  • Maximum redundant edges per node ???? ???????
    ?? ????? ???????
  • ??????? ???? ???? ????? ????.

20
?????? ??????? ?? ??????
  • ???? ???? ??
  • maximum number of links for a node
  • ?????? ????? ?? ??????? ???? ??????? ????? ?????
    ??? ????????
  • ??? ?? ????? ?? maximum redundant edges per node
    ??????? ????? ??????? ?????? ???? ?? ??????
  • ???? ?????????? ???? ???? ?? ???? ?? ?????? .
  • ?????? ????? ???? ????? ????? ?? maximum number
    of links per node
  • ???? ?? ??? ???? ???? . ?????? ???? ????? ??????
    ???
  • ??? ?? ??? ??? . ??? ?? ???? ?? ?????? ????
    ?????? ????????? ?????? ????? ???? .
  • ??? ?????? ??????? ?????? ???? ????? ??? ??????
    ?????? ??????? ????? ??? ??????
  • ?????? ??????.

21
?????
  • ?????? ???????? ?? ???????? ?-alpha power spanner
    ????? ?? ??????????.
  • ?????? ????? ?????????? ???? ????????? ????? ??
    . ??? ?????? ???????? ????? ??? ????
    ????????? ?? .
  • ?????? ???????? ????? ????????? ????? ???????
    ????, ?????? ??????? ?????.
  • ?????? ?? ?????? ??????? ??????? ??????? matlab
    ???????? ???????. ??????? ?? ?????? ??????
    ??????.

22
Thanks, The End
Write a Comment
User Comments (0)
About PowerShow.com