Introduction to Regression Analysis - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Introduction to Regression Analysis

Description:

Straight lines, fitted values, residual values, sums of squares, relation to the ... When this mean is a straight line, we write. Alternately. The Errors. Are ... – PowerPoint PPT presentation

Number of Views:18
Avg rating:3.0/5.0
Slides: 13
Provided by: gordonhi
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Regression Analysis


1
Introduction to Regression Analysis
  • Straight lines, fitted values, residual values,
    sums of squares, relation to the analysis of
    variance

2
Population characteristics
  • Expected value
  • Is a conditional mean it is dependent on
  • The conditional mean is called the regression
  • When this mean is a straight line, we write

3
Alternately
4
The Errors
  • Are independent
  • This assumption is important
  • Excluded Longitudinal data repeated measures
    split units cross overs clustering

5
The sample gives the estimates of the population
characteristics
  • For example
  • Some books write
  • Your choice (but be clear!)

6
A simple example
  • X Y
  • 1 2
  • 2 3
  • 3 3
  • 4 7
  • 5 10

7
(No Transcript)
8
(No Transcript)
9
Residual Sum of Squares
  • Without X
  • With X
  • The difference is the sum of squares
    attributable to X The Regression SS

10
Analysis of variance table
  • Source SS df MS
  • Regression 40 1 40
  • Residual 6 3 2
  • Total 46 4
  • F 40/2 20 cf F(1,3)
  • p-value P(F gt 20) 0.0208

11
Regression analysis
  • . regr y x
  • Source SS df MS
    Number of obs 5
  • -------------------------------------------
    F( 1, 3) 20.00
  • Model 40 1 40
    Prob gt F 0.0208
  • Residual 6 3 2
    R-squared 0.8696
  • -------------------------------------------
    Adj R-squared 0.8261
  • Total 46 4 11.5
    Root MSE 1.4142
  • --------------------------------------------------
    ----------------------------
  • y Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • x 2 .4472136 4.47
    0.021 .5767667 3.423233
  • _cons -1 1.48324 -0.67
    0.548 -5.720331 3.720331
  • --------------------------------------------------
    ----------------------------

12
Centering
  • . gen xcx-3
  • . regr y xc
  • Source SS df MS
    Number of obs 5
  • -------------------------------------------
    F( 1, 3) 20.00
  • Model 40 1 40
    Prob gt F 0.0208
  • Residual 6 3 2
    R-squared 0.8696
  • -------------------------------------------
    Adj R-squared 0.8261
  • Total 46 4 11.5
    Root MSE 1.4142
  • --------------------------------------------------
    ----------------------------
  • y Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • xc 2 .4472136 4.47
    0.021 .5767667 3.423233
  • _cons 5 .6324555 7.91
    0.004 2.987244 7.012756
  • --------------------------------------------------
    ----------------------------
Write a Comment
User Comments (0)
About PowerShow.com