Title: Divisional Presentation Template
1Modern Experimental Designs Construction and
Analysis
Replace this box with a picture? Just click
Insert Picture from file Locate your
image Click insert Position picture over box
Crop/scale etc. Select picture, hold down shift
key and click on white background then Click Draw
rder send to back The top of your picture
should be hidden by the top shape.
Emlyn Williams CSIRO Australia
2Topics covered
- Standard Design Types
- Completely Randomized
- Randomized Block
- Factorial
- Split-plot
- Incomplete Block Designs
- Alpha
- Row-column
- Crossover
- Spatial
3 Analysis of variance
- Completely Randomized Design
- Randomized Complete Block Design
4 Dbh (cm) means for a seed orchard (SO) and a
routine plantation (P) seedlot
Seedlot Replication SO
P ______________________
1 30.38 28.16 2
27.91 25.62 3
28.06 26.61 4
31.42 32.59 5
30.11 28.80 6 31.52
28.19 7 31.72
31.23 8 33.53
28.34
5 GenStat output from analysis of variance of dbh
means for a Completely Randomized Design
Source of variation d.f. s.s.
m.s. v.r. F pr. plot stratum seedlot
1 14.269 14.269 3.25
0.093 Residual 14 61.410
4.386 Total 15 75.679
Tables of means Grand mean 29.64
seedlot SO P 30.58
28.69
6Completely Randomized Design
Model
7Estimation - Completely Randomized Design
Overall mean
Seedlot effects
8Residuals -Completely Randomized Design
Plot residuals vs fitted values
9How good is the model?
- If the assumed linear model is good, then the
residuals will be small - We need to be able to measure how good the model
is
10Calculation of sums of squares
Seedlot sum of squares
Residual sum of squares
11Check assumptions!!!!
- Use plot of residuals vs fitted values
- Look for possible outliers
- Look for any relationship between the fitted
values and the spread of residuals
12Example of a plot of residuals against fitted
values
I I
2 3 5 I
3 2 2 3 3 2 2
2 0.0 I 3 5 3 3 5
3 2 4 I
3 2
2 I 2
2 I I
I
-5.0 I I
I I
I
I -10.0 I
---------------------------------------------
------------ 0.0 2.0
4.0 6.0 8.0 10.0 12.0
resid v. fitted using
symbol
13 Layout of plots with seedlot labels (SO or P)
and dbh means
Replicate 1 2 3 4
5 6 7 8
__________________________________________________
____ SO SO P SO P
P SO P 30.38 27.91 26.61 31.42
28.80 28.19 31.72 28.34 P P
SO P SO SO P SO 28.16
25.62 28.06 32.59 30.11 31.52 31.23 33.53
14GenStat output from analysis of variance of dbh
means for a Randomized Complete Block Design
Source of variation d.f. s.s.
m.s. v.r. F pr. repl stratum
7 48.867 6.981 3.90 repl.plot
stratum seedlot 1 14.269
14.269 7.96 0.026 Residual
7 12.543 1.792 Total
15 75.679 Tables of means
Grand mean 29.64 seedlot SO
P 30.58 28.69
15Randomized Complete Block Design
Model
16Estimation
Replicate effects
Fitted values
17Residuals
Plot residuals vs fitted values
18Residual sums of squares
- Completely randomized design61.410
- Randomized complete block design 12.543
- Residuals are smaller for RCB
- It is a better model
19Testing
- We test the null hypothesis that the seedlots do
not differ from each other - Use the F test
- For the RCB design the F value is 7.96 on 1 and 7
d.f. (5 value for F1,75.59) - Reject the null hypothesis
20Standard errors of difference (SED)
- Between two seedlot means is
where
t- value 1.89/0.67 2.82 (5 value for
t72.365)
21Least significant difference (LSD)
- LSD t7 SED2.3650.67 1.585
- this is smaller than the difference between
seedlot means (1.89) - Hence seedlot means significantly different
22Important issues
- Use of blocking structures (RCB reduces residual
mean square from 4.386 to 1.792) - Data needs to be presented in field order so that
blocking structures are clear - Check assumptions
23Strata
- Each time we place a restriction on the
allocation of treatments to plots, we create a
stratum - Each replicate contains one plot of each seedlot
replicate stratum - The plots within each replicate create the
plot-within-replicate stratum
24Layout of seedlings in four replicates of five
plots, each with four trees (each x refers to one
tree)
Replicate Plot 1
2 3 4
__________________________________________ 1
x x x x x x x x x x x x x x x x 2
x x x x x x x x x x x x x x x
x 3 x x x x x x x x x x x x x
x x x 4 x x x x x x x x x x x x
x x x x 5 x x x x x x x x x x x
x x x x x direction of trend
25 Replicate (repl) stratum
Replicate Plot 1
2 3 4
__________________________________________ 1
x x x x x x x x x x x x x x x x 2
x x x x x x x x x x x x x x x
x 3 x x x x x x x x x x x x x
x x x 4 x x x x x x x x x x x x
x x x x 5 x x x x x x x x x x x
x x x x x direction of trend
26 Plot-within-replicate (repl.plot) stratum
Replicate Plot 1
2 3 4
__________________________________________ 1
x x x x 2 x x x x 3 x
x x x 4 x x x x 5 x x x
x direction of trend
27Tree-within-plot-within-replicate
(repl.plot.tree) stratum
Replicate Plot 1
2 3 4
__________________________________________ 1
x x x x 2 3 4
5 direction of
trend
28Two-dimensional layout with four rows and four
columns (each X refers to a whole plot)
Column Row 1
2 3 4
______________________ 1 x x
x x direction 2
x x x x of trend
3 x x x x 4
x x x x
direction of trend
29What are the strata?
- Row (row) stratum
- Column (column) stratum
- Plot (row.column) stratum
- Could also then have a row.column.tree stratum
30Factorial Designs
- More than one treatment factor
- e.g. seedlot, fertilizer
- or treatments A and B
model
31Example of interaction
Interaction caused by combined effect of A and B
32Germination test
- Treatment A
- 6 Acacia mangium seedlots
- Treatment B
- 4 seed pre-treatments
- control
- nick
- boiling water and soak
- boiling water 1 min
- 25 seeds per dish
- 3 replicates (trays)
- 24 dishes per replicate (4 x 6 array)
- variate is percentage germination
33Control comparison
- In GenStat we can set up an option to compare the
control treatment against the other treatments - This gives a test of whether the treatments
overall are doing better than the control
34 GenStat output from analysis of variance of
percentage germination
Analysis of variance Variate v1
percent - percent(count/25)100 Source of
variation d.f. s.s. m.s. v.r.
F pr. repl stratum 2 35.11
17.56 0.18 repl.row.column
stratum contcomp 1 58542.30
58542.30 601.52 lt.001 seedlot
5 2894.44 578.89 5.95
lt.001 contcomp.treat 2 5300.15
2650.07 27.23 lt.001 contcomp.seedlot
5 1347.04 269.41 2.77
0.029 contcomp.treat.seedlot 10 961.19
96.12 0.99 0.467 Residual
46 4476.89 97.32 Total
71 73557.11
35(continued)
Tables of means Variate v1
percent - percent(count/25)100 Grand mean
51.4 contcomp 1 2
2.0 67.9 rep. 18 54
seedlot 18265 18249 18248 18211
18212 18217 59.7 48.7
40.7 58.0 52.3 49.0 contcomp
treat control nick bws bw1min
1 2.0 2
56.9 65.8 80.9
36Plot of residuals against fitted values from
analysis of variance of germination percentage
I I I
25.0 I I
I
I
I
I
2 0.0
I 73
2 I 2
2 I
2
I
I
I -25.0 I
---------------------------------------------
------------ -20.0 0.0
20.0 40.0 60.0 80.0 100.0
resid v. fitted using
symbol
37Options to correct for problem with spread of
residuals
- Transformation?
- Here small fitted values and small range of
residuals related just to the control treatment,
so better to remove the control from the analysis - Use the restrict option of GenStat
38GenStat output from analysis of variance with
the control pre-treatment deleted
Analysis of variance Variate v1
percent - percent(count/25)100 Source of
variation d.f. s.s. m.s. v.r.
F pr. repl stratum 2 64.6
32.3 0.25 repl.row.column stratum treat
2 5300.1 2650.1
20.61 lt.001 seedlot 5
4148.1 829.6 6.45 lt.001 treat.seedlot
10 961.2 96.1 0.75
0.676 Residual 34 4372.7
128.6 Total 53 14846.8
39Interpretation of analysis
- Seedlots significantly different (). Best
germination is seedlot 18265 (79.1)LSD10.6 - Control treatment removed from the analysis
- Other pre-treatments significantly different
(). Best pre-treatment is boiling water for
one minute (80.9)LSD7.67 - Interaction not significant
40Split-plot designs
- More than one treatment factor
- Strata normally called replicates,
main-plots-within-replicates and
sub-plots-within-main-plots-within-replicates - Treatment factors on different strata
- e.g. basal nitrogen at the main-plots level,
seedlots at the sub-plots level
41Split-plot model
42Irrigation / Fertilizer trial
- Main-plot treatment factors
- irrigation (yes or no)
- fertilizer (yes or no)
- Sub-plot treatment factor
- 4 Eucalyptus grandis seedlots
- 2 replicates
- 42 trees per plot (7 x 6)
- Variate is height at 34 months
43 Layout of plots with seedlot numbers and height
means
Replicate
1
2 irrigation none none plus plus
plus plus none none fertilizer none
plus plus none none plus none
plus _______________________________
_______________________
4 2 1 3 2
1 4 3 4.71 16.36 14.38
4.66 5.41 14.60 4.32 14.98
3 1 2
4 3 4 1 2
6.23 15.29 16.89 4.95 5.73 12.21 4.16
15.98 2 3 4
1 4 2 3 1
7.46 13.99 11.25 5.81 5.80 14.84 5.02
14.40 1 4 3
2 1 3 2 4
6.39 11.08 15.58 7.50 6.39 15.00 6.79
11.98 Seedlots 1
Bulahdelah 2
Coffs Harbour seed orchard
3 Pomona plantation
4 Atherton
44Plot of residuals against fitted values from
analysis of variance of height means
1.2 I I
I
I
I
I
0.0 I
I
I
2
I
I
I
-1.2 I
---------------------------------------------
------------ 2.5 5.0
7.5 10.0 12.5 15.0 17.5
resid v. fitted using
symbol
45GenStat output from analysis of variance of
height means
Source of variation d.f. s.s.
m.s. v.r. F pr. repl stratum
1 0.7564 0.7564 1.08 repl.mainpl
stratum irrig 1 0.1081
0.1081 0.15 0.721 fert
1 590.6485 590.6485 841.11
lt.001 irrig.fert 1 0.0072
0.0072 0.01 0.926 Residual
3 2.1067 0.7022 1.05
repl.mainpl.subpl stratum seedlot
3 39.6538 13.2179 19.68
lt.001 irrig.seedlot 3 1.1098
0.3699 0.55 0.657 fert.seedlot
3 9.9503 3.3168 4.94
0.018 irrig.fert.seedlot 3 1.7360
0.5787 0.86 0.487 Residual
12 8.0596 0.6716 Total
31 654.1364
46(continued)
Tables of means Grand mean 10.00
irrig none plus 9.95
10.06 fert none plus
5.71 14.30 seedlot Bulahdelah Coffs SO
Pomona pltn Atherton 10.18
11.40 10.15 8.29
fert seedlot Bulahdelah Coffs SO
Pomona pltn Atherton none
5.69 6.79 5.41 4.95 plus
14.67 16.02 14.89
11.63
47Interpretation of analysis
- Fertilizer significant ()
- Irrigation not significant
- Irrigation by fertilizer interaction not
significant - Seedlots significant ()
- Coffs harbour seed orchard best (11.40m)
- LSD 0.89
- Seedlot by fertilizer interaction significant ()
- due to different behaviour of Atherton seedlot
48Cross-over model
492 x2 drug trial(Jones and Kenward Ex 2.1)
- 56 patients
- Drug (A) vs Placebo (B)
- 27 in AB group, 29 in BA group
- Variate is exploratory flow rate (response)
50Part of the data file for 2 x 2 drug trial
51GenStat analysis of variance of 2 x 2 drug trial
Source of variation d.f. s.s.
m.s. v.r. F pr. patient stratum group
1 10572.7 10572.7 0.90
0.347 Residual 54 634865.6
11756.8 36.04 period stratum treat
1 479.6 479.6
patient.period stratum treat
1 3026.1 3026.1 9.28 0.004 Residual
54 17617.1 326.2 Total
111 666561.1
52(continued)
Tables of means Variate response
Grand mean 232.5 group AB BA
242.5 223.1 rep. 54
58 treat Drug(A) Placebo(B)
237.7 227.3 Standard errors of
differences of means Table
group treat rep. unequal
56 d.f. 54
54 s.e.d. 20.50 3.42
53Plot of residuals against fitted values from
analysis of variance of response
I 40.0 I I
I
I
I
2 2 I
3 24
0.0 I 2
322 2 I
323
I 3 2
I
I
I
-40.0 I ------------------
----------------------------------------
0.0 80.0 160.0 240.0
320.0 400.0 480.0
resid v. fitted using symbol
54SAS analysis of variance of 2 x 2 drug trial
Sum of Source DF
Squares Mean Square F Value Pr gt F
Model 57 648943.9852 11384.9822
34.90 lt.0001 Error 54
17617.1338 326.2432 Corrected Total
111 666561.1190 Source
DF Type I SS Mean Square F Value Pr
gt F GROUP 1 10572.6799
10572.6799 32.41 lt.0001 PATIENT(GROUP)
54 634865.5790 11756.7700 36.04
lt.0001 PERIOD 1 479.6066
479.6066 1.47 0.2306 TREAT
1 3026.1198 3026.1198 9.28
0.0036
55 (continued)
H0LSMean1
RESPONSE LSMean2
TREAT LSMEAN Pr gt
t Drug(A)
238.000215 0.0036
Placebo(B) 227.597632
Dependent Variable RESPONSE response
Standard
Parameter
Estimate Error t Value Pr gt t
Trt2 -Trt1 -10.4025830 3.41561476
-3.05 0.0036
56Incomplete block designs
- Explanation
- Model
- Choice of incomplete block design
- Alpha designs
- Row-column designs
- Latinized row-column designs
- CycDesigN
57An RCB design for three replicates of 42
seedlots
42 12 15 37 17 22 4
21 26 25 18 28 36 16 10
35 6 29 11 8 2 Replicate 1
23 38 41 3 31 24 30 39
1 27 40 14 34 7 19 20 33
5 9 13 32 25 16 5 6
29 40 24 23 33 21 42 22 19
41 12 36 8 34 32 15 39
Replicate 2 2 20 28 35 26 13
3 9 14 1 7 10 4 30
18 37 27 17 31 38 11 33
16 21 7 1 41 37 17 28 40
29 24 36 35 4 26 34 11 10
18 39 Replicate 3 22 19 9
13 14 31 25 5 6 20 12 2
38 32 23 3 30 27 15 42 8
Equal variance between any two plots
58Problems with RCB assumptions
- Equal pairwise plot variances within replicates?
- E.g. in example 42 plots of 5 x 5 trees at 2m x
2m spacing 0.43 ha per replicate - too big to assume uniformity
- Better to break the area up into smaller units
- E.g. Incomplete blocks
59Replicate 1 subdivided to illustrate the use of
incomplete blocks to adjust for trend
Block 1 2 3 4 5
6 7 __________________________
______ 42 12 15 37
17 22 4 21 26 25 18
28 36 16 10 35 6 29
11 8 2 23 38 41 3
31 24 30 39 1 27 40
14 34 7 19 20 33 5
9 13 32 Low
High ground
ground
direction of trend
60Model for an incomplete block design
61Choice of incomplete block design
- Many ways to organize seedlots in incomplete
block designs - Which is the best??
- We need a measure of how good a design is
relative to other designs with the same
parameters r, v and k - We use the average efficiency factor, E
62Two possible arrangements for an incomplete
block design with r 2, v 9 and k 3
Replicate 1 Replicate
2 Block 1 2 3 1 2
3 ____________
___________ 1 4 7
1 2 3 2 5 8
4 5 6 3 6 9 7
8 9 Replicate 1
Replicate 2 Block 1 2 3
1 2 3 ___________
___________ 1 4 7
1 5 4 2 5 8 2
8 6 3 6 9 3
9 7
63Alpha designs
- They are a type of incomplete block design
- One-dimensional blocking structure
- Available for all parameter sets
- Good for nested treatment stuctures
- Construct designs in CycDesigN
64Unrandomized alpha design for r 3, s 5 and k
4
Block
1 2 3 4 5
_____________________ 1 2
3 4 5 6 7 8 9 10
Replicate 1 11 12 13
14 15 16 17 18 19
20 1
2 3 4 5 7 8 9
10 6 Replicate 2 13
14 15 11 12 19 20 16
17 18 1 2 3 4 5
8 9 10 6 7
Replicate 3 15 11 12 13
14 17 18 19 20 16
Randomization?
Nested treatment structure?
65Alpha design 1D - blocking v19, k4,5, r3
66Row-column designs
- Two-dimensional blocking structures
- Strata
- replicates
- rows within replicates
- columns within replicates
- plots
- Better field control than incomplete blocks
- Latinized designs if replicates are together
67Latinized row-column design for v20, s5, k4,
r3
682-Latinized row-column design for v18, s6, k3,
r3
69Partially-latinized design for v9, s3, k3, r4
70Software - CycDesigN
- Windows 95 to XP
- Visual C
- Resolvable / non-resolvable
- Block / row-column
- One / two stage
- Cyclic / alpha / other
- Factorial / nested treatments
- t-Latinized / partially-latinized
- Unequal block sizes
- http//www.ffp.csiro.au/software/
71Analysis of Incomplete Block Designs
- Fixed-Effects model
- Mixed-Effects model
- Summary of Analysis options
- Nested treatment structure
72Model for an Incomplete Block Design (Fixed
Effects)
73Incomplete Block Design Matrix form of Model
distributed as
74 Replicate 1
Replicate 2 Block 1 2 3 1
2 3 ___________
___________ 1 4 7 1
2 3 2 5 8 4
5 6 3 6 9 7
8 9
75Treatment comparisons in an RCB design
4 seedlots 2 replicates
Replicate 1 2 1 1 2 2 3 3 4 4
All pairwise comparisons available in each
replicate
76Treatment comparisons in an Incomplete Block
Design
4 treatments 2 replicates 2 plots per
incomplete block
Replicate 1
2 Block 1 2 1 2 1 3 1 2 2 4 3 4
Direct comparison
Indirect comparison
Block comparison
Average Efficiency Factor
77Incomplete Block Designs - Tradeoffs
- Extra blocking structures help to reduce the
residual mean square - Smaller block sizes
- better control of field variation
- less treatment information within incomplete
blocks - smaller average efficiency factor
- Decrease in residual mean square needs to
outweigh loss of treatment information within
blocks
78Mixed-effects Model
where
is distributed as
and independent of
Can write the model as
where
79Analysis of incomplete block designs
- Mixed-model analysis
- blocks random
- variance between two plots
- within a block
- between blocks
- estimated treatment means can be thought of as a
weighted combination of information within and
between blocks
80Combination of treatment information
Special Cases
81 Analysis of a Latinized Row-column Design
- Weipa casuarina equisetifolia trial
- 4 replicates, 6 rows and 10 columns
- 60 families
- originally 64 but 4 did not germinate
- nested treatment structure for regions
- Inoculation treatment at repls level
82Country of origin of the provenances
Country
Provenance Number Name
Number _____________________________
_______________ 1 Australia
1,2,3,4 2 Benin
5 3 China
6,7,63 4 Egypt
8,10,11 5 Fiji
12,13,56 6 Guam
14 7 India
15,16,17,18,19,20 8 Kenya
21,22,23,24,25,26,27,28 9
Malaysia 29,30,31,32,33,34,35,36,57
10 Mauritius 58
11 PNG 37 12
Philippines 38,39,40 13
Puerto Rico 59 14 Solomon
Is. 41,42 15 Sri Lanka
60,61,62 16 Thailand
45,46,47,48 17 Vanuatu
50,64 18 Vietnam
51,52,53,54,55
83 Field layout
Column 1 2 3 4 5 6
7 8 9 10 Row
_____________________________________
1 20 51 8 27 13 56 16 25 54 45
2 36 11 32 38 2 37 29 48
17 23 3 21 41 58 52 15 60
26 4 30 14 Replicate 1 4
24 64 35 53 22 61 10 6 42 12
5 59 55 18 28 31 33 40 62 63 46
6 34 3 50 19 7 57 47 39
5 1 1 4 63 31 40 36 20
14 47 25 6 2 19 15 24 54
28 30 55 3 41 61 3 29 57
42 18 32 26 17 59 58 34 Replicate 2
4 45 53 16 23 56 2 22 60 7
13 5 5 21 46 51 1 38 48
52 12 10 6 50 39 11 37 62
35 27 8 33 64 1 31 13 20
7 37 51 8 56 26 16 2 38
17 28 48 29 59 1 64 3 5 3
58 35 33 21 12 27 42 54 14 32
Replicate 3 4 62 23 63 50 30
15 57 22 36 2 5 55 47 40
10 11 46 19 45 18 41 6 61
4 6 60 39 25 34 24 53 52 1
48 56 2 42 26 23 20 12 32 55
2 40 16 29 62 58 63 61 5 13
47 3 15 8 34 22 6 36 4
10 19 39 Replicate 4 4 52
30 25 33 17 64 41 38 46 24 5
11 27 14 3 45 31 54 57 21 18
6 1 7 60 35 59 50 53 51 37
28
84Part of the GenStat output from the RCB analysis
Analysis of variance Variate v1
dbh - dbhsqrt(dbh1dbh1 dbh2dbh2
dbh3dbh3) Source of variation d.f.
s.s. m.s. v.r. F pr. repl
stratum inoc 1 11.5415
11.5415 11.46 0.077 Residual
2 2.0142 1.0071 1.66
repl.row.column stratum country
17 54.6185 3.2129 5.30
lt.001 inoc.country 17 10.0724
0.5925 0.98 0.487 country.prov
41 18.6057 0.4538 0.75
0.854 inoc.country.prov 41 21.4625
0.5235 0.86 0.698 Residual
116 70.2557 0.6057 Total
235 188.5705
85Plot of residuals against fitted values from RCB
analysis of variance of dbh means
I I I 1.5 I
I
I 2
I 2
I 2 23 2222
I 2 2 3 233
22422223 0.0 I
2 22 232 2 2 42 I
2 2 2 2433 6232 3
I 2 3 4 22 2 2
I 2
I 2 2
I -1.5 I
------- -----
---------- ------- -------- --------- -----
1.6 2.4 3.2 4.0
4.8 5.6 6.4
resid v. fitted using symbol
86Part of the GenStat output from the
fixed-effects analysis
Regression Analysis Response
variate v1 dbh - dbhsqrt(dbh1dbh1
dbh2dbh2
dbh3dbh3) Fitted terms Constant inoc
repl column repl.row
repl.column prov inoc.prov Accumulated
analysis of variance Change d.f.
s.s. m.s. v.r. F pr. inoc
1 11.5415 11.5415
48.05 lt.001 repl 2 2.0142
1.0071 4.19 0.020 column
9 65.2421 7.2491 30.18 lt.001
repl.row 20 16.5932 0.8297
3.45 lt.001 repl.column 27 16.4051
0.6076 2.53 0.001 prov
58 53.8939 0.9292 3.87 lt.001
inoc.prov 58 8.4698 0.1460
0.61 0.971 Residual 60 14.4107
0.2402 Total 235
188.5705 0.8024
87GenStat output from the mixed-effects analysis
REML Variance Components Analysis
Response Variate v1 dbh -
dbhsqrt(dbh1dbh1 dbh2dbh2 dbh3dbh3)
Fixed model Constantreplcolumnprov Rand
om model repl.rowrepl.column
Estimated Variance Components Random term
Component S.e. repl.row
0.0640 0.0294 repl.column
0.0459 0.0262 units
0.1951 0.0253 Wald tests
for fixed effects Fixed term
Wald statistic d.f. repl
12.8 3 column
144.9 9 prov
284.1 58
88Table of estimated seedlot means from analyses of
the RCB and mixed-effects models
Seedlot RCB Mixed 1
1.85 2.42 2 3.24 3.14
3 2.94 2.86 4
2.50 2.26 5 3.34 3.72
6 3.38 3.54 7
3.98 3.95 8 2.64 2.75
10 2.47 2.65 11
2.40 2.05 12 2.39 2.75
13 2.58 2.98 14
2.34 2.65 15 3.77 3.45
16 3.60 3.92 17
3.45 3.43 18 3.26 3.36
19 3.83 3.65 SED
0.55 0.35
89 Rows within replicates BLUPs
90Estimated long column means
91Summary of Analysis Options
- Replicates usually fixed
- physical interpretation
- (no) treatment information
- computation advantage
- Two-dimensional blocking structures
- Latinized designs for contiguous replicates
- long columns usually fixed
92Nested Treatment Structure
- Number treatments 1 to v
- Better to initially estimate treatment effects
without the nested structure - Then analyse estimated treatment using the nested
structure
93GenStat output from the analysis of nested
seedlot structure
Analysis of variance Variate v1
dbh - dbhsqrt(dbh1dbh1 dbh2dbh2
dbh3dbh3) Weight variate trepl Source of
variation d.f. s.s. m.s. v.r.
F pr. country 17 47.8213
2.8130 14.42 lt.001 country.prov
41 13.6472 0.3329 1.71 0.013 residual
119 0.1951
9413 x 4 dose-response study(Jones and Kenward Ex
5.1)
- Investigation of respiratory failure
- 13 subjects (babies)
- 4 doses of nitric oxide
- Variate is post-ductal arterial oxygen tension
(pco2resp)
95Design of dose-response study
Treatments (Doses of nitric oxide) A
5ppm B 10ppm C 20ppm D 40ppm
96Plot of residuals against fitted values from the
analysis of pco2resp
2
- I I
I 3.0 I I
I
I
I
I
2 0.0 I
2
I 2
I
I
I
I
-3.0 I ------------------
----------------------------------------
0.0 2.5 5.0 7.5
10.0 12.5 15.0
resid v. fitted using symbol
97GenStat REML output for analysis of 13x4
dose-response study
Residual variance model Term
Factor Model(order) Parameter
Estimate S.e. Residual
Identity Sigma2 2.961
0.806 Wald tests for fixed effects
Fixed term Wald statistic
d.f. Wald/d.f. Chi-sq prob Sequentially
adding terms to fixed model subject
128.75 12 10.73
lt0.001 period 3.70
3 1.23 0.296 carry1
4.12 3 1.37
0.249 dose 0.67
3 0.22 0.879
98SAS mixed output for analysis of 13x4
dose-response study
Covariance Parameter
Estimates
Cov Parm Estimate
Residual 2.9614
Type 1 Tests of Fixed Effects
Num Den
Effect DF DF F Value
Pr gt F SUBJECT
12 27 10.73 lt.0001
PERIOD 3 27 1.23
0.3172 DOSE 3
27 0.53 0.6636
CARRY1 3 27 1.06
0.3804
99Spatial Model
Alternative form for the incomplete block mixed
model
where
Spatial specification
Linear Variance
Williams et al. Biometrics (to appear)