Title: Update on Roughening Work
1Update on Roughening Work
- Jake Blanchard
- HAPL MWG
- Fusion Technology Institute
- University of Wisconsin
- e-meeting July 2003
2Agenda
- Update on Experiment Comparison
- Thoughts on Measuring Mass Loss
- Latest Temperature Predictions
- Initial Fracture Results
- Progress on Paper
3Experiment Comparison Table
Experiment Type Energy (keV) Max Fluence per Pulse (J/cm2) Approx Depth of Energy (microns) Max Starting Temperature (C)
RHEPP Ions 750 7 1-10 600
Z X-Rays 0.8-1.2 3000 1-2 1000
XAPPER X-Rays 0.1-0.4 7 1-2 RT
UCSD Laser 0.7 0 1000
Electra electrons 500 2 100
Infrared Infrared q10 MW/m2 0
UW IEC Ions 100 Flux5x1019 /m2-s 1
4Experiment Comparison Table
Experiment Max Sample Size (cm) Flat Top Pulse Width (ns) Rise Time (ns) Max Rep Rate (Hz) Max Number Cycles Sample Actively Cooled?
RHEPP 100 NO
Z 6 NO
XAPPER 2.5 diameter 30-50 (FWHM) 10 1e6 NO
UCSD 1 cm x 1 cm 8 10 3e5 NO
Electra 30 cm x 100 cm 100 40 5 10k/d YES
Infrared gt10 ms YES
UW IEC NO
5Data to Be Collected in Surface Exposure
Experiments
- BASICS
- Name of Facility
- Name of Experimentalist
- DEPOSITION
- Energy Deposition type
- Energy Spectrum
- Deposition Profile
- Fluence per Cycle
- Number of Cycles
- Pulse Width and Rise Time
- TARGET
- Initial Target Temperature
- Target Dimensions
- Is the target cooled? How?
- Target Material(s)
- Material Identifier (Code)
- Surface Cleaning Process
- RESULTS
- Surface Evaluation Before and After
- Mass Loss
- Temperature History
6How to Measure Mass Loss
- Weigh Samples before and After
- Measure Remaining Thickness of Armor
(Profilometry, Auger, RBS) - Measure What Comes Off (Spectrometry/RGA)
7Latest Temperature Predictions
Tcoolant400 C, h10,000 W/m2K, steel thickness3
mm
Chamber radius (m) Xe Pressure (mTorr) Target Yield (MJ) W Thickness (microns) Peak W temperature in 10 cycles (C) Peak Steel Temperature in 10 cycles (C) Steel Temperature Swing (C)
8.5 10 400 50 3280 820 350
8.5 0 154 50 1820 600 170
8.5 10 154 50 1440 570 140
8.5 0 154 100 1820 520 90
8.5 10 154 100 1440 500 70
7.5 0 154 50 2320 660 230
7.5 10 154 50 1870 620 180
7.5 20 154 50 1530 590 160
7.5 0 154 100 2320 550 120
7.5 10 154 100 1860 530 100
6.5 0 154 50 3100 730 290
6.5 10 154 50 2540 690 240
6.5 20 154 50 2070 660 210
6.5 0 154 100 3100 600 160
6.5 10 154 100 2530 580 140
5.5 10 154 50 3660 800 330
8Fracture Mechanics Analysis of Tungsten Coating
Crack tip stress intensities during thermal
cycling calculated using ANSYS J-integral
fracture mechanics algorithm
Contact surface
Crack depth
Tungsten
Crack tip
Steel
9Thermal Response of Structure
Temperature Contours Near Surface at end of
Pulse 6.5 m chamber 154 MJ target No gas 50
microns W
10Stresses Resulting from Thermal Cycle
Stresses at Maximum Temperature
Stresses After Cool Down
MPa
MPa
11Fracture Mechanics Analysis Results
- Maximum stress intensities occur at end of cycle
(when structure is cool). - Stress intensity decreases with increasing crack
depth
Stress Intensity vs. Crack Depth After One
Thermal Cycle
Transient Stress Intensity (30 mm Crack Depth)
12Next Steps
- What is effect of crack spacing?
- What if crack reaches steel?
13Paper Outline My Chapter
- 3 Armor (Blanchard)
- 3.1 Prompt threats Expt and modeling of the
response of armor candidates - 3.1.1 ablation (Expts Olson, Rank, Tanaka,
Latkowski, Najmabadi. - Modeling Wisc)
- 3.1.2 roughening (Expts Olson, Rank, Tanaka,
Latkowski, Najmabadi. - Modeling Ghoneim, Blanchard)
- 3.1.3 sputtering (Expts ? Modeling Lucas?)
- 3.1.4 Do we gain anything with EW? (Ghoneim,
Raffray) - 3.2 Long term threats Expt and modeling of the
response of armor candidates - 3.2.1 He retention ( EW Ghoneim, Solid wall
Snead, Expts Kulcinski) - 3.2.2 Modeling thermo-mechanical fatigue long
term effects (Blanchard,. ) 3.2.3 Expts
thermo-mechanical fatigue long term effects
(Latkowski, Najmabadi, Raffray, Ghoneim, (SNL?))