From Valid Inequalities To Heuristics : A unified view of primaldual approximation algorithms in cov - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

From Valid Inequalities To Heuristics : A unified view of primaldual approximation algorithms in cov

Description:

The Primal-Dual method has been successfully applied to analyze a variety of ... heuristic H that produces a solution with value is ? approximation algorithm if: ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 39
Provided by: Hor46
Category:

less

Transcript and Presenter's Notes

Title: From Valid Inequalities To Heuristics : A unified view of primaldual approximation algorithms in cov


1
From Valid Inequalities To Heuristics A
unified view of primal-dual approximation
algorithms in covering problems
  • Dimitris Bertsimas
  • Chung-Piaw Teo
  • Presented by Alon Alapi Erez Engel

2
Lecture Overview
  • Introduction
  • Primal Dual Algorithm (PD)
  • The notion of Strength (?)
  • Theorem 1
  • Shortest path example
  • Conclusion and open problems

3
Introduction
  • In the last 20 years, two approaches to discrete
    optimization have emerged Polyhedral
    combinatorics and Approximation Algorithms.
  • The success of the first approach critically
    depends on the choice of valid inequalities, but
    it is not clear which class of valid inequalities
    is better at particular instance.
  • In the second approach, the quality of solutions
    produced is judged by the worst-case criterion,
    for which the motivation is designing algorithms
    for problems that are robust, i.e. work well for
    all inputs.

4
Introduction (cont.)
  • In recent years it has been recognized that tight
    LP relaxations can often be used as basis for
    analyzing for heuristics for NP hard problems.
  • The Primal-Dual method has been successfully
    applied to analyze a variety of exact and
    approximation algorithms.
  • These analyses, how ever, appear to be problem
    specific. Moreover, the analyses do not usually
    offer insight into the design of such algorithms.

5
Motivation
  • This paper is motivated by the authors desire to
    find an algorithmic technique to design
    approximation algorithms when better formulations
    are available.
  • It presents a generic frame work to design
    approximation algorithms for covering-type
    problems.

6
Lets Recall
  • An LP relaxation is a ? approximation if
  • Z IZ ?Z
  • A proposed heuristic H that produces a solution
    with value is ? approximation algorithm
    if

7
??????? ?? ?????
  • ???? ????? ????? ?????? ????? ????????? ?????,
    ??????? ??? ????????? ????? ?? ????? ??????
    ????'.
  • ???? ?? ???? ?? ????? ????? ????? ??? ??? ?????
    (?) ??? ??-????????? ??? ???? ????? ????????
    ??????????.
  • ???? ?? ???? ????? ???' ?????? ? , ???? ?? ???
    ????? ?? ?????????? ?????? (?????????).
  • ????? ?????' ???????? ?? ??? ?????? ?????? ????
    ?????? ??? ????' ???????, ?????? ???? ?????.

8
Primal-Dual Framework For Covering Problems
  • The problem

9
Primal-Dual Framework For Covering Problems
(Cont.)
  • ?????? ?????? ????? ????? ????????
  • Primal-Dual Algorithm , ?????? (PD).
  • ??? ??????? ?? ????????? ???? ?? ??????? ???,
    ????? ???? ???? ??????? ???????? ???? ?-1.
  • ?????? ???? ?? ????, ????? ????? ?????? ??????
    ????????.
  • ???? ????? ????? ?? ????? ????????, ?????? ?????
    ????? ?? ??? ?????? ??????? ??? ??????? .

10
PD Algorithm
  • Step 1. Initialization
  • Step 2. Addition of valid inequalities construct
    a valid inequality Set

11
PD Algorithm (Cont.)
  • Step 3. Problem modification
  • Repeat step 2 and 3 until solution is feasible.
  • Else conclude that solution is infeasible.

12
PD Algorithm (Cont.)
  • Step 4. Reverse deletion
  • For r from
    t-1 to 1 do
  • Corresponds to a minimal feasible solution to
    problem instance .
  • Step 5 Return
    .

13
Vertex Cover example
  • Step 1. Initialization

9
8
X2
X1
X3
X4
2
7
14
Vertex Cover example (Cont.)
  • Step 2. Addition of valid inequalities
  • K(1)3, is the chosen variable index. Vertex
    X3 is part of the solution vector.

15
Vertex Cover example (Cont.)
  • Step 3. Problem modification

0
5
7
1
The new problem
7
8
X2
X1
X3
X4
5
16
Vertex Cover example (Cont.)
  • Step 2. Addition of valid inequalities

K(2)1, the chosen variable index. Vertex X1 is
part of the solution vector.
17
Vertex Cover example (Cont.)
  • Step 3. Problem modification

X1
1
X3
  • Step 45. Reverse deletion
  • Can we do without X1 ? NO!
  • Can we do without X3 ? NO!

18
??????? ???????? ???????? ?????????
  • ???? ??? ??????? ???????? ???????, ???????? ???
    ???????, ?????? ?? ??????? ????????? ?????
    ????'.
  • ???????? ?????? ????? ???? ????? ???????, ?? ??
    ???? ????? ???????. ????? ?????? ?????? ???'
    ????? ??? ??????? ??????? ???.
  • ????' ???? ?????? ????? ???????? ????? ???????.
    ?????? ??? ????? ??? ??? ?? ????? ???????, ???
    ????? ?? ????? ???? ?? ?? ?? ???????? ??????.
  • ?????? ???????? ????? ???? ??? ??????? ??????
    ???? (???? ???? ??????? ????????). ???, ???????
    ??????? ???? ?? ?? (??? ??? ???? yr). ????? ??
    ???? ?????? ??? ???????, ?????? ?? ????? ???? ??
    yr , ??????? ???????? ???????? ????? ????' ??????
    ????? ???????? ????? ???????.

19
The Notion Of STRENGTH
  • The strength ?r of the inequality
  • Is defined to be
  • wi - ??????? ???????? ???? ?? ?????????
    ???????? ??
  • ???????? ?????? ???? ? r .
  • ??? ??
    ????????? ????? ?? ??????
    ?????.

20
Theorem 1
  • In particular
  • (a)
  • (b) If all inequalities are redundant
  • Inequalities for then

21
Theorem 1 - Proof
  • ???? - ?????? ????? ?????? ?- r ??
    ?????????.
  • - ?????? ??????? ???????? ?????
    ?????? ?- r.
  • ???? ????? ????? ?????????? ??
  • For every rt to 1

22
Theorem 1 Proof (cont.)
  • ?) ???? ?????????? (rt)

  • - ??? ????? ?

?????? ??? ????? ????? ?? ?????? ?- t ?? ????'.
Xt1 ?????? ?- t
?) ???? ?????????? ????? (1) ??????? ???? ?)
????? ???? Kr
23
Theorem 1 Proof (cont.)
???? ?????? ?????? ??????? ????? ?????? ?-r
  • ?????? ? (?????? ?- r1
    ????? ?? ?????? ????? ?????? ????? ??? ?????).
  • ???? ?????
  • ????? ??????????
  • ??????? ? ???? ??

???? ??????????
24
Theorem 1 Proof (cont.)
  • ???, ?-(1) ????? ? ??? ????? ????????
    ????? ???????
  • ????? ?????? ?????? ????' ???? ?? ??? ? ????
    ?????? ????.
  • If, in addition, all the inequalities
  • are redundant to then

25
????? ????????
  • ????? ????? ????? ????? ???????? ?????? ?, ??
    ???? ????? ??? ??? ??-?????? ??????? (strength)
    ????? ??-??? ?.
  • ??? ????? ?? ????????? ???? ?? ?? ???? ?????
  • ?) ????? ??-?????? ???.
  • ?) ????? ?? ??????? ????? ??? ??? ????? ??
    ?????? ????????, ?????? ????? ??????.
  • ?) ????? ????? ??????? ??? ??? ?? ?????????.
  • ?????? ????? ???????? ????? ????????? ????
    ?????? ?"? ???? ???????, ????????? ???? ????
    ???????????, ?? ????? ?????? ???? ?????? ????
    ???????????.

26
The Shortest Path Problem
  • The problem of finding the shortest path from s
    to t in an, undirected graph G, can be modeled as
    an edge-covering formulation.

27
The Shortest Path Problem (cont.)
  • Formulation is reducible.
  • Theorem 4. Inequalities

(forward Dijkstra)
(backward Dijkstra)
and
and
(bidirectional Dijkstra)
Have strength 1, i.e.,
28
Shortest Path example
  • Input Graph G
  • Output Shortest path
  • Step 1. Initialization

F1
x37
x59
x11
C1
t
s
X1
x612
x23
x44
29
Shortest Path example (cont.)
  • Step 2. Addition of valid inequalities

30
Shortest Path example (cont.)
  • Step 3. Problem modification

F2
C2
x37
X2
x37
x59
x59
x11
t
t
s
s
x612
x612
x23
x22
x44
x44
31
Shortest Path example (cont.)
  • Round 2

x35
x37
x59
x59
F3
t
t
s
s
C3
x612
x22
x612
x44
X3
x44
32
Shortest Path example (cont.)
Rolling rolling.
x35
x31
x59
x59
F3
t
t
s
s
C3
x612
x612
x44
X3
33
Shortest Path example (cont.)
  • And then again

F4
x59
x31
x59
C4
t
t
s
s
x612
X4
x611
34
Shortest Path example (cont.)
  • ????? ????

X5
Is it over????????????? No!
35
Shortest Path example (cont.)
  • Step 4. Reverse Deletion
  • ??? ???? ??? X5? ??
  • ??? ???? ??? X3? ??
  • ??? ???? ??? X4? ??
  • ??? ???? ??? X2? ??
  • ??? ???? ??? X1? ??
  • ??? ????? ??????? (???? ??
  • ????????) ????? ??????? ???
  • 17917
  • ????? ?? ??????? ????????
  • 1241517

x37
x59
x11
t
s
x23
x44
36
?????
  • ?????? ??????? ????? ?- strength ?? ??-?????????
    ?????, ?????? ???' ????? ???? ??? ???? ?? ?????
    ?????.
  • ?????? ?? ???? ?? ??? ??? ??????? ?? ?????
    ????????? ??????, ???? ??? ?- strength ??
    ??-???????? ???? ????? ???? ?????? ???? ???.
  • ????? ?? ?????? ??? ?????? ?? ????? Primal-Dual
    ??????? ??? ?? ???????? ????? ????, ??????? ??
    ????? ??????? ?? ????? ???? ??????? ?????????.

37
????? ??????
  • ?????? ????? ????? ?????? ?????? ??????, ??? ????
    ????? ?? ??-???????? ????? ?????? ???? ??????
  • ????? ??? ?????? ????? ?????? ????? ??????
    ??????? ???? ??-??????????
  • ?????? ????? ?????, ???? ????? ?? ???? ??????
    ????? ???????? ????? ?? ??? ????? ????? ??
    ??-??????? ??? ??? ??? ?? ????'. ??? ???? ?????
    ???? ????? ?? ?????-?????? ?????? ????? ??????
    ???? ???? ?? ??-??????? ??? ??? ??? ?? ????'?

38
The End
Write a Comment
User Comments (0)
About PowerShow.com