Introduction to Robotics Tutorial II - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Introduction to Robotics Tutorial II

Description:

Each joint has only one degree of freedom. rotate around its z-axis. translate along its z-axis ... Angle around zi-axis. Denavit-Hartenberg. Denavit-Hartenberg ... – PowerPoint PPT presentation

Number of Views:101
Avg rating:3.0/5.0
Slides: 31
Provided by: webcourse
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Robotics Tutorial II


1
Introduction to RoboticsTutorial II
  • Alfred Bruckstein
  • Yaniv Altshuler

2
Denavit-Hartenberg
Reminder
  • Specialized description of articulated figures
  • Each joint has only one degree of freedom
  • rotate around its z-axis
  • translate along its z-axis

3
Denavit-Hartenberg
  • Link length ai
  • The perpendicular distance between the axes of
    jointi and jointi1

4
Denavit-Hartenberg
  • Link twist ai
  • The angle between the axes of jointi and jointi1
  • Angle around xi-axis

5
Denavit-Hartenberg
  • Link offset di
  • The distance between the origins of the
    coordinate frames attached to jointi and jointi1
  • Measured along the axis of jointi

6
Denavit-Hartenberg
  • Link rotation (joint angle) fi
  • The angle between the link lenghts ai-1 and ai
  • Angle around zi-axis

7
Denavit-Hartenberg
  1. Compute the link vector ai and the link length
  2. Attach coordinate frames to the joint axes
  3. Compute the link twist ai
  4. Compute the link offset di
  5. Compute the joint angle fi
  6. Compute the transformation (i-1)Ti which
    transforms entities from linki to linki-1

8
Denavit-Hartenberg
This transformation is done in several steps
  • Rotate the link twist angle ai-1 around the axis
    xi
  • Translate the link length ai-1 along the axis xi
  • Translate the link offset di along the axis zi
  • Rotate the joint angle fi around the axis zi

9
Denavit-Hartenberg
10
Denavit-Hartenberg
11
Denavit-Hartenberg
12
Denavit-Hartenberg
13
Denavit-Hartenberg
Multiplying the matrices
14
DH Example
3 revolute joints Shown in home position
joint 1
R
Link 2
Link 3
Link 1
joint 2
joint 3
L1
L2
15
DH Example
Shown with joints in non-zero positions
Z0
x3
z3
?3
?2
x2
x1
Z2
?1
x0
Z1
Observe that frame i moves with link i
16
DH Example
?1 90o (rotate by 90o around x0 to align Z0
and Z1)
R
Z0
L2
L1
?1
x1
x2
x3
x0
?1
?3
?2
Z3
Z1
Z2
Link Var ? d ? a
1 ?1 ?1 0 90o R
2 ?2 ?2 0 0 L1
3 ?3 ?3 0 0 L2
17
DH Example
Link Var ? d ? a
1 ?1 ?1 0 90o R
2 ?2 ?2 0 0 L1
3 ?3 ?3 0 0 L2
18
DH Example
19
DH Example
x1 axis expressed wrt 0
y1 axis expressed wrt 0
z1 axis expressed wrt 0
Origin of 1 w.r.t. 0
20
DH Example
x2 axis expressed wrt 1
y2 axis expressed wrt 1
z2 axis expressed wrt 1
Origin of 2 w.r.t. 1
21
DH Example
x3 axis expressed wrt 2
y3 axis expressed wrt 2
z3 axis expressed wrt 2
Origin of 3 w.r.t. 2
22
DH Example
where
23
Example the Stanford Arm
24
Example the Stanford Arm
25
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2
3
4
5
6
26
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2 0 d2 90 ?2
3
4
5
6
27
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2 0 d2 90 ?2
3 0 d3 (var) 90 90
4
5
6
28
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2 0 d2 90 ?2
3 0 d3 (var) 90 90
4 0 d4 90 ?4
5
6
29
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2 0 d2 90 ?2
3 0 d3 (var) 90 90
4 0 d4 90 ?4
5 0 d5 0 ?5
6
30
Example the Stanford Arm
i ai di ?i ?i
1 0 d1 90 ?1
2 0 d2 90 ?2
3 0 d3 (var) 90 90
4 0 d4 90 ?4
5 0 d5 0 ?5
6 0 d6 0 ?6
Write a Comment
User Comments (0)
About PowerShow.com