A Lowmass Tracking System for - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

A Lowmass Tracking System for

Description:

40, - 20, 0, 0, 20, 40 degree. 5 up to 14 mm. 80 mm bare Aluminium ... S.Chernenko, O.Fateev, Yu.Gusakov, L.Smykov , Yu.Zanevsky. LHE of JINR Dubna, Russia ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 25
Provided by: joachim78
Category:

less

Transcript and Presenter's Notes

Title: A Lowmass Tracking System for


1
A Low-mass Tracking System for
WCC 98, Vienna
  • the new Di-Electron Spectrometer _at_ GSI
  • GSI Darmstadt, LHE/JINR Dubna, IKF Frankfurt,
    MEPhI Moscow, IPN Orsay, FZ Rossendorf

2
Concept of the HADES Spectrometer
  • Lepton Identification
  • RICH
  • Radiator C2F6
  • Spherical mirror, CaF2 window
  • Photon detector CsI photo cathode
  • META
  • TOF plastic scintillators
  • Shower detector (lead converter)
  • Tracking
  • Super-conducting Toroid (6 coils)
  • Bmax 0.7 T, Bending power 0.34 Tm
  • Multi-wire Drift Chambers (MDC)
  • four planes, six layers each
  • small cell (0.5 - 1.4 cm)

3
Artists views
4
Tasks of the Tracking System
  • General Event Characterisation
  • Invariant Mass of Dileptons (DM 1)
  • Background Rejection

5
Requirements on the MDCs
  • Mass resolution better than 1 (s)
  • Low mass material
  • Position resolution lt 140 mm ( in one module )
  • Survive in high multiplicity environment
  • 200 charged hadrons, 20 photons
  • sufficient granularity, and
  • redundancy
  • Minimisation of hadronic and electromagnetic
    background
  • Low Z materials
  • Identification of low mass Dalitz and conversion
    pairs
  • Good position resolution of the inner two planes

6
MDC DesignGeometry of the Tracking System
  • 24 conceptually identical modulesin 4 different
    geometries
  • 6 drift cell layers
  • redundancy for hit recognition
  • orientation optimised with respect to resolution
    in direction of the kick angle
  • ? 190 cells per layer
  • sufficient granularity (max multiplicity 0.6
    hits/cm along y)
  • 26 200 cells in total

7
MDC DesignSummary of Design Parameters
  • Number of channels
  • Total size
  • Number of modules
  • Drift-cell layers per module
  • Maximum drift path
  • Cathode wires
  • Potential wires
  • Sense wires
  • Counting gas
  • 26200
  • 33 m2
  • 24 in four different geometries
  • 6 with stereo angles of 40, - 20, 0, 0, 20,
    40 degree
  • 5 up to 14 mm
  • 80 mm bare Aluminium
  • 80 and 100 mm bare Aluminium
  • 20 mm Au/Tungsten
  • He / i-C4H10

8
Frame Design Concept I Power Frames
  • Used for plane I
  • forces of the wires are counter-balanced by a
    pre-stressed frame glued to the wire frame
  • power frame produced at low cost and sufficient
    precision by laser cutting
  • sense/field and cathode wires glued to the same
    gfc-frame

9
Frame Design Concept II controlled sag
  • Used for plane II
  • Individual layers are allowed to bend in partly
  • Frames are pre-stressed with the calculated (FEM)
    force of the wire plane before gluing.
  • Cathode and sense layer glued to a super-layer
    for practical reasons

10
MDC DesignRadiation thickness
Anticipated mass resolution (0.4 lt M lt 1.5) lt 1
  • Total radiation thickness (x/X0)
  • 1st tracking plane 0.56 10-3
  • Air 0.16 - 0.72 10-3
  • 2nd tracking plane 0.53 10-3
  • He bag 0.17 - 0.26 10-3
  • 3rd tracking plane 0.48 10-3
  • Air 0.85 - 1.31 10-3
  • 4th tracking plane 0.46 10-3
  • Total 3.2 - 4.2 10-3
  • Taken steps
  • He-based counting gas
  • Aluminium potential wires
  • He bag

11
FEM calculations Deformation of a Super-layer
  • Calculated deformation introduced to power frame
    before gluing
  • inside outside
  • 00 layerx 3,0 mm 3,0 mmy 0,1 mm 1,3 mm
  • 200 layer x 4,3 mm 1,2 mm y 0,7 mm 2,1 mm
  • 400 layer x 4,6 mm 0,7 mm x 1,3 mm 2,3 mm
  • 400 layer cathode plane x 2,2 mm 1,1 mm y
    1,4 mm 1,8 mm

12
SEM of wiresProblems with the Quality of Wire
  • 100 mm, Elisenhütte, Germany
  • bare aluminium (5056)
  • not available in 80 mm
  • 80 mm, California Fine Wire, US
  • bare Aluminium (5056)
  • ultra finish, annealed

13
RD with prototypesChoice of the Quencher
Various quenchers
  • Advantage of I-butane
  • long drift time plateau
  • Increased concentration
  • higher primary yield
  • stable operation

Quencher concentration
14
RD with prototypesSimulation with GARFIELD
  • Intrinsic Resolution dominated by Primary
    Statistics

15
RD with Prototypes Test of different read-out
versions
  • Gas mixture Helium/i-butane (6040)

16
RD with prototypes Effect of quencher
concentration
16
110
t ns

efficiency
drift time resolution
8020
105
7030
d
14
6040
100
5050
95
12
90
10
85
80
8
75
70
6
65
4
60
1,4
1,6
1,8
2
2,2
1,4
1,6
1,8
2
2,2
HV kV
HV kV
17
Beam tests with Prototypes External tracking of
2.1 GeV protons
  • Chamber equipped with ASD-8 prototype board
  • Standard CAMAC TDC

18
Self tracking of 2.1 GeV protonsIntrinsic
Resolution of the Chamber
  • drift-time correlation of subsequent cells
  • Intrinsic resolution along drift path
  • compared to Garfield simulation
  • Chamber behaviour quantitatively understood
  • Offset attributed to electronic noise

19
External tracking of 2.1 GeV protonsConstancy of
the drift-time
  • Fit with two straights
  • Slight curvature disregarded

20
People involved in the MDC project
  • R. Badura, H.Daues, W. Koenig, J. Hehner,
    J.Hoffmann, F. Schäfer, H.Stelzer, P.Zumbruch
  • GSI Darmstadt, Germany
  • S.Chernenko, O.Fateev, Yu.Gusakov, L.Smykov ,
    Yu.Zanevsky
  • LHE of JINR Dubna, Russia
  • K.Bethge, C. Garabatos, W.Karig, Ch. Müntz,
    J.Stroth, J.Wüstenfeld
  • Univ. of Frankfurt, Germany
  • E.Atkin, Yu.Mishin, Yu.Volkov
  • MEPI Moscow, Russia
  • J-L. Boyard, Th. Hennino, A. Maroni, J. Peyre, J.
    Pouthas, V. Poux
  • IPN Orsay, France
  • W. Enghardt, F. Dohrmann, E. Grosse, M. Sobiella
  • FZ Rossendorf, Germany
  • D.Schall
  • TH Worms, Germany

21
Read-out concept
22
RD with prototypes Ageing with X-rays (55Fe)
  • Expected charge dose ? 10 mC/year
  • no gain degradation within an equivalent of 2
    years running

23
Read-out SystemRead-out and digitising of 2
Gbyte/sec
  • 8 channel TDC-ASIC
  • Working principle (TDC2001a)
  • Ring oscillator
  • 220 ps binning, 14 bit range
  • Zero conversion time
  • Multi-hit (leading/leading, leading/trailing
    edge)
  • Customised read-out interface
  • Token driven
  • Zero suppression on chip
  • 22 bit parallel, 25 MHz
  • Technology
  • NEC CMOS-8 (0.6 m)
  • a Geiges et al. IEEE Trans. Nucl. Sci. 41 (94)
    232

24
Read-out SystemPlacement of the front-end boards
  • Motherboard - daughterboard combination mounted
    on frames.
  • Daughterboard
  • 16 channel preamp/shaper/discriminator
  • Based on ASD-8
  • Motherboard
  • 64, 96 channel version (8, 12 TDCs)
  • Fully memory mapped to slow control
  • Thresholds for ASD-8
  • Common or
  • Interface to ROC
  • Differential (LVDS)
  • Up to 20 Mbyte/sec
  • low power lt 50 mW / channel
Write a Comment
User Comments (0)
About PowerShow.com