Resolved imaging of extra-solar photosynthesis patches with a "Laser Driven Hypertelescope Flotilla" Antoine Labeyrie - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

Resolved imaging of extra-solar photosynthesis patches with a "Laser Driven Hypertelescope Flotilla" Antoine Labeyrie

Description:

Resolved imaging of extrasolar photosynthesis patches with a "Laser Driven Hypertelescope Flotilla" – PowerPoint PPT presentation

Number of Views:109
Avg rating:3.0/5.0
Slides: 56
Provided by: ProfE52
Category:

less

Transcript and Presenter's Notes

Title: Resolved imaging of extra-solar photosynthesis patches with a "Laser Driven Hypertelescope Flotilla" Antoine Labeyrie


1
Resolved imaging of extra-solar photosynthesis
patches with a "Laser Driven Hypertelescope
Flotilla"Antoine Labeyrie Julien Dejonghe
(College de France ) Stéfania Residori
Umberto Bortolozzo ( Institut Non Linéaire de
Nice)Hervé Le Coroller ( Observatoire
Astronomique Marseille Provence)
2
Exo-Earth Imager
  • Simulations of hypertelescope imaging with
    coronagraph ( Labeyrie, 1999)

Earth at 3 parsecs

simulated direct image with a 100km flotilla of
150 mirrors, 3m in size 30mn exposure 30x30
resels, 50nm spectral resolution
3
Signatures of exo-life
  • Seasonal photosyntetic patterns are robust
    signatures of life
  • Example plankton blooms on Earth


4
Principle of the hypertelescopeor
 multi-aperture imaging interferometer with
densified pupil   makes Fizeau interferometry
efficient by shrinking the side-lobes
5
Off-axis star
  • Its image is shifted more than the envelope
  • and eventually moves out of it gt
    limitation of "Direct Imaging Field"

Fizeau focus
camera
densifier
Stepped wave
6
Fizeau imaging Comparison of few large
many small apertures, at same collecting
area and array size
6 apertures, rotating
6 apertures, fixed
  • with the small apertures - more stars
    seen
  • - lower gain with rotation

7
Fizeau imaging ( numerical simulated)
comparison of 605 small apertures with 6 large
ones, imaging 1000 stars at same collecting
area and array size
605 small apertures
Aperture patterns
star cluster
  • Better image with small apertures
  • Also when densifying

6 large apertures
8
Interferometer flotilla The science
gain with more apertures (Labeyrie et al.,
Experimental Astronomy, 2008)
  • Max. number of "active" resels grows as N2
  • Size of "Direct Imaging Field" is
  • Infinite for a Fizeau
  • - limited to l/s with fully
    densified pupil ( s is the aperture spacing)
  • Science vs. mirror size d , at given cost Cpa
    N dg , where g 2 to 3
  • Sc Cpa2 d-2g (7/4) log2 Cpa (1-7g/4) log2
    d
  • Strong science gain with decreasing d
  • 1000 times more science with 10cm than 1m
  • But how small ? Minimum size is about 30mm for
    tolerable beam spread
  • 40,000 mirrors of 30mm for same area as JWST .
    Laser-trapped flotilla

science
Science mirror count vs. mirror size at given
array cost
1010
g 3
108
106
g 1
104
g 2
102
N
g 3
104
g 1
102
d
g 2
g 3
1
2
3
4
5
g 3
10
10
9
Flying mirrors small is beautyful !
  • Why ?
  • More science with small mirrors, at given
    collecting area
  • - Lower mass because thinner mirrors

10
The Luciola concept, proposed to ESA Cosmic
Vision ( not selected )
  • flotilla of nanosats, 1km size
  • driven by solar radiation pressure
  • typical nanosat size 30cm, mass lt 0.2 kg

model used for testing radiation pressure drive
11
Now studied "Laser Trapped Hypertelescope
Flotilla"laser-trapped mirrors as passive
"space chips"
Framed diamond membrane Size 4cm
Pair of laser beams
12
"Laser-Trapped Hypertelescope
Flotilla"(Labeyrie et al., Experimental
Astronomy, 2009 )
Expandable toward a 100km "Laser Trapped
Exo-Earth Imager (LT-EEI)
13
Principle of laser-trapped mirror
Dichroic coating Semi-reflective at laser
wavelengths Reflective at star wavelength
Laser fringes Monochromatic white
  • interference of beams modulates the output
    intensities
  • radiation pressure P/c reverses vs.
    position
  • at l/4 intervals
  • laser is repeatedly blue-shifted for
    "pumping" toward central fringe

14
Pellicle beam-splitters for "Laser Trapped
Hypertelescope"
F
Self-centering
15
Transverse trapping Self-centering in laser
beam through "laser tweezer" effect
  • attitude also self-adjusting

torquing force
16
Laser trapped hypertelescope flotilla at least
2 satellites needed, with virtual delay line
17
Laser Trapped Exo-Earth Imager Apodization and
coronagraphy
  • Needed to null the parent star
  • mirrors smaller than 12cm do not separate a
    habitable planet from its star at gt 1pc
  • But flotilla can be apodized to be explored
  • With sparser mirrors near the flotilla's edge
  • With clusters
  • Coronagraphic techniques also applicable in
    sub-array images to be explored

18
Laser Trapped Exo-Earth Imager nulling of the
parent star
  • Possible with
  • Bracewell ( or phase mask) nulling among close
    pairs of mirrors
  • coronagraphy in sub-array clusters, with
    hierarchical pupil densification

Low resolution image
High resolution image
19
Typical sizing of a Laser Trapped Exo-Earth
Imager (LT-EEI)
For a snapshot image like this at 3 pc in 10
hours
  • 100km flotilla with 10,000 to 100,000 mirrors,
    10 to 3cm in size ( equivalent to Keck 1 area)
  • Spaced 1000 to 300m apart
  • Total mass of mirrors 236kg " all mirrors fit
    in a suitcase"

100,000 mirrors of 0.03 m, collecting area
70m2, flotilla size 100km small flat mirror
wavefront error 5.6 nm , min wavelength for
Rayleigh 2.2 nm usable also for far UV ?
star envelope at focus, at wavelength 500 nm is
3.3 at min Rayleigh wavelength 2.2 nm is 0.015
mirror spacing 316 m , Direct Imaging Field 1.6
nanoradian, or 326 micro arc-second angular
resolution at 500 nm is 1.03 microarc-second, at
min Rayleigh wavelength 2.2 nm is 4.6
nanoarc-second min. size of laser beam shapers
front 2.6 rear 13.3 m can be diluted mass of
mirrors single 2.3 gram, all 100,000 236
kg Grun's data speed after collision with
meteorite larger than 1 micron is gt 1.4E-08 m/s
, events per year 2.4
20
Lab testing in vacuum , suspended from torsion
wire initiated by S.Residori U.Bortolozzo at
Institut Non Linéaire de Nice
21
Proposed testing in the International Space
Station
  • résidual gravity
  • 0,2 micro-g or 2 micron.s-2
  • Acceptable with few watts of laser power
  • Geostationary satellite also considered

ESA's Columbus lab racks connected to external
vacuum
22
Terrestrial hypertelescopes
Fringes (Le Coroller et al., 2005)
Prototype with balloon-borne camera at Haute
Provence observatory (Dejonghe Le Coroller
2009)
  • 200m aperture version under study
  • Cable suspension tested in the Spanish Pyreneees

23
200m aperture
Hypertelescope at Barrosa
200m
24
Testing of cable at Barrosa ( August 2009)
Fringes (Le Coroller et al., 2005)
Prototype with balloon-borne camera at Haute
Provence observatory
  • 200m aperture version under study
  • Cable suspension tested in the Spanish Pyreneees

25
Conclusions and future work
  • laser-trapped "space chips" must be further
    validated
  • through numerical simulation, together with
    dynamic behaviour of flotilla
  • and in the laboratory
  • and on ISS
  • may provide a fast route toward large
    interferometer flotillas
  • with high dynamic range, rich science
  • including Exo-Earth Imager potential

26
Hypertelescope(Labeyrie, 1996 Lardière et
al., 2006)
aperture
Exit pupil
  • imaging interferometer, multi-aperture, with a
    densified pupil
  • Forms direct images.
  • . in a smaller field the a Fizeau
    interferometer, but intensified

27
Typical sizing of 1km laser driven flotilla
  • Flotilla span 1 kilometer
  • Size of mirror elements 30mm, mass 0.5
    gram
  • Laser power 3mW per mirror
  • max. acceleration 0.02 micron.s-2
  • Escape velocity of mirrors ( axial) 30nm/s
  • Collecting area of 6.5m JWST matched with
    40,000 mirrors
  • requiring a 120 Watt laser.
  • Delivery package for mirrors volume lt 0.2 m3
  • Deployment with pair of directed laser beams

28
Pellicle beam-splitters for "Laser Trapped
Hypertelescope"
paraffin blocking
polishing fixture for bi-conical frame
holding lens
29
Exo-planètes, étoiles et galaxies
progrès de l'observation
  • cours sur www.college-de-france.fr , fichiers de
    projections
  • Articles sur www.oamp.fr/lise

30
Synthèse douverture
  • Paires ou triplets
  • Déformation de la base ou rotation
  • Image par synthèse de Fourier

31
Comparaison hypertélescope
synthèse d'ouverture cohérent
incohérent
  • Gain pic/halo
  • Gain en bruit de photons

B
A
?
image integrée
32
Gain en signal/bruit hypertélescope/synthèse
douverture
B
A
?
  • gain par intensification du pic en N et
    atténuation des pieds en N-3/2 ( Lardière 2007) ,
    voire plus par coronographie
  • Cas limité par le bruit de photons
  • gain 0,6 N7/4 à préciser, selon
    lapodisation, coronographie
  • Exemple gain 2.105 avec 1000 miroirs de 1m,
    par rapport à deux de 23m

33
Laser -trapped mirror
  • Requires a delay line, or virtual delay line

34
Spaceships and "space chips"
35
Hypertelescope in space "Laser-Trapped
Diluted Mirror"(Labeyrie et al., Experimental
Astronomy, 2008 )
36
"Laser-Trapped Hypertelescope
Flotilla"(Labeyrie et al., Experimental
Astronomy, 2008 )
A laser-illuminated beam-splitter generates a
pair of counter-propagating waves. Their
interference generates a standing wave which
accurately traps small pellicle beam-splitters.
The giant diluted mirror thus obtained focuses
starlight. The flotilla is located at the
Lagrange L2 point of the Earth and Sun.
37
Miroir élémentaire piégé par laseranneau
rainuré de centrage, vu en coupe
Les rayons laser réfléchis et réfractés par les
sillons produisent des composantes de pression de
radiation qui orientent le miroir piégé et le
centrent sur le pinceau de lumière laser
38
Comparison of hypertélescope with optical
aperture synthesis Signal and photon
noise (Labeyrie 2007, Labeyrie 2008)
  • Hypertelescope signal/noiseh (N Pt /
    kd)1/2
  • aperture synthesis signal/noisep 2 (Pt /N)
    1/2
  • hypertelescope gain is (1/2) N ( kd) -1/2
  • kd is the dark zone attenuation in the "clean
    field"
  • example
  • SNR gain 15,000 if N1000, kd 10 -3

39
Champ de l'hypertélescope combien de
(secondes)2 ?
l/d
caméra
  • Grille de densifieurs pour exploiter les "lobes
    de diffraction" adjacents si d 1m et l
    500nm gt dimension l/d 0,1"
  • Limitée en dimension par les aberrations de
    champ coma, astigmatisme
  • Lesquelles dépendent de la combinaison optique
  • Exemple d'un miroir parabolique à F/3,6
  • 33m coma diffraction visible pour 1/2
    champ 2"
  • 1000 m " " 64 m"

40
Grille de densifieurs, pour exploiter les "lobes"
adjacents
  • et y corriger séparément la coma et la
    turbulence

41
Ouvertures inégales et densification inégale
. homogénéisant la pupille de sortie
Densification de pupille inégale 1 et 40
  • ELT de 50m hypertélescope 1km, à
    200 ouvertures de 1m
  • pic rétréci et intensifié x 17

42
Pellicle beam-splitters for "Laser Trapped
Hypertelescope"
43
200m aperture at Barrosa (Spanish Pyrenees)
44
Interferometer
  • Still works with only two elements image is
    degraded, but resolution is not affected

45
Fizeau interference with 2, 3, 5,9 27
aperturespoint source
  • The peak/halo ratio improves with more apertures
    .
  • and thus the dynamic range on resolved sources

46
Hypertelescope(Labeyrie, 1996 Lardière et
al., 2006)
aperture
Exit pupil
  • imaging interferometer, multi-aperture, with a
    densified pupil
  • Forms direct images.
  • . in a smaller field the a Fizeau
    interferometer, but intensified

47
  
Simulated Fizeau imagingcomparison of 205 small
apertures and 2 large ones ( 10x), 288 stars
spread function
48
Laser trapping also cools mirrors
Of interest for mid-infrared
49
Gain de l'hypertélescope par rapport à la
synthèse d'ouverture incohérente
  • Signal/(bruit de photons) d'un hypertélescope
    périodique , complètement densifié (Labeyrie
    2007)
  • SNRh sqr (N Pt / kd) 1.29 N5/4 Pt1/2
  • Relativement à la synthèse d'ouverture
  • gain en signal/bruit Ghyper 0,64 N7/4
  • Soit gain 2000 avec 100 ouvertures

50
(No Transcript)
51
1-
  • spherical geometry

52
Fizeau imaging
random pinholes
Aluminum foil

Full aperture
50 apertures
235 apertures
600 apertures
15 apertures
  • image improves with more apertures
  • as it emerges from the halo
  • caused by diffraction through the small
    sub-apertures, and which takes energy away from
    the image
  • a situation avoided by "hypertelescope"
    imaging

53
Fizeau imaging with aperture rotation ( lab
simulation)


fixed rotated 19 apertures
54
  
Simulated Fizeau imaging30 apertures and 1000
stars
spread function
55
Operation at L2 in Earth shadow
  • Laser located outside of shadow
  • Sky coverage in 6 months with continuous scan,
    transverse to Sun direction
Write a Comment
User Comments (0)
About PowerShow.com