Title: NRAOAOC Lunch, 15 Dec 2004
1(No Transcript)
2CBI Polarization New Results!
- Brought to you by
- S. Myers, B. Mason (NRAO),
- Readhead, T. Pearson, C. Dickinson (Caltech)
- J. Sievers, C. Contaldi, J.R. Bond (CITA)
- P. Altamirano, R. Bustos, C. Achermann (Chile)
- the CBI team!
3CMB Acoustic Peaks
- Compression driven by gravity, resisted by
radiation - j ladder series of harmonics projection
corrections
peaks p ls j troughs p ls (j ½)
4CMB Polarization
- E B modes even odd parity modes on k-vector
- E (even parity, gradient, aligned 0 or 90 to
k-vector) - from scalar density fluctuations ? predominant!
- B (odd parity, curl, at 45 to k-vector)
- from gravity wave tensor modes, or secondaries
Courtesy Wayne Hu http//background.uchicago.edu
5Polarization Power Spectrum
Planck error boxes
Hu Dodelson ARAA 2002
6The Instrument
- 13 90-cm Cassegrain antennas
- 78 baselines
- 6-meter platform
- baselines 1m 5.51m
- 10 1 GHz channels 26-36 GHz
- HEMT amplifiers (NRAO)
- cryogenic 6K, Tsys 20 K
- Single polarization (R or L)
- polarizers from U. Chicago
- Analog correlators
- 780 complex correlators
- Field-of-view 44 arcmin
- image noise 4 mJy/bm 900s
- Resolution 4.5 10 arcmin
- configuration dependent
7CBI 20002001, WMAP, ACBAR, BIMA
Readhead et al. ApJ, 609, 498 (2004) astro-ph/0402
359
SZE Secondary
CMB Primary
8Polarization Interferometry
- CBI receivers can observe either RCP or LCP
- correlation products RR, RL, LR, or LL from
antenna pair - Correlations to Stokes parameters (I,Q,U,V)
- co-polar RR I V
LL I V - CMB not circularly polarized, ignore V (RR LL
I) - cross-polar RL Q i U e-i2Y LR
Q i U ei2Y - Stokes I,Q,U to E and B
- Q i U E i B ei2c ? RL E i
B ei2(c-Y) - visibility covariances
- ltRR RRgt TT ltRR RLgt TE ltRL RLgt EE
BB - multipole l 2p B / l for baseline B
- circularly polarized interferometer directly
measures E and B!
9DASI 3-year polarization results
- Leitch et al. 2004 (astro-ph/0409357) 16Sep04!
- EE 6.3 s
- TE 2.9 s
- consistent w/ WMAPext model
- BB consistent with zero
- no foregrounds yet!
10CBI DASI Fields
- galactic projection image WMAP synchrotron
(Bennett et al. 2003)
11CBI Current Polarization Data
- Observing since Sep 2002 (processed to May 2004)
- compact configuration, maximum sensitivity
12Polarization Mosaics
- I, Q, U dirty mosaic images (9m differences) 70
sq. deg
13New CBI Polarization Power Spectra
- 7-band fits (Dl 150)
- 10-band fits (Dl 100)
14New Shaped Cl fits
- Use WMAP03 best-fit Cl in signal covariance
matrix - bandpower is then relative to fiducial power
spectrum - compute for single band encompassing all ls
- Results for CBI data (sources projected from TT
only) - qB 1.22 0.21 (68)
- EE likelihood vs. zero equivalent significance
8.9 s - Conservative - project subset out in polarization
also - qB 1.18 0.24 (68)
- significance 7.0 s
15Cosmology from EE Polarization
- NOTE parameter constraints dominated by higher
precision TT from CBI 2001-2002 (and to lesser
extent 2002-2004) data! - To discern what polarization data is adding, will
need to be more subtle - Standard Cosmological Model
- EE predictable from TT
- constraints dominated by more precise TT
measurements - Beyond the Standard Model
- derive key parameters from EE alone check
consistency - add new ingredients (e.g. isocurvature)
16Breaking degeneracy
- Are temperature peaks intrinsic or dynamical?
- if dynamical (standard model) then polarization
shifted - if intrinsic (non-standard) then polarization
aligned with TT - however, would not expect EE only! still
17New CBI EE Polarization Phase
- Parameterization 1 envelope plus shiftable
sinusoid - fit to WMAPext fiducial spectrum using
rational functions
f 0 EE prediction f 180 aligned with TT
18New CBI EE Polarization Phase
- Peaks in EE should be offset one-half cycle vs.
TT - allow amplitude a and phase ? to vary
best fit a0.94 ? 2433 (Dc21) Dc2(1,
0)0.56
19New CBI EE Polarization Phase
- Scaling model spectrum shifts by scaling l
- same envelope f,g as before
?ls-1 sound crossing angular scale
fiducial model ?0 1.046 (WMAPext)
20New CBI EE Polarization Phase
- Scaling model spectrum shifts by scaling l
- allow amplitude a and scale ? to vary
21New CBI EE Polarization Phase
- Scaling model spectrum shifts by scaling l
- allow amplitude a and scale ? to vary
zoom in one-half cycle
best fit a0.93 slice along a1 ?/?0
1.020.04 (Dc21)
cf. grand unified ? 1.0440.005 ?/?0
0.9980.005 (WMAPCBI04CBI02)
22New CBI, DASI, Capmap
23New DASI EE Polarization Phase
- Use DASI EE 5-bin bandpowers (Leitch et al. 2004)
- bin-bin covariance matrix plus approximate window
functions
24New CBI DASI EE Phase
- Combined constraints on ? model
- DASI (Leitch et al. 2004) CBI (Readhead et al.
2004)
25Conclusions
- CMB polarization interferometry (CBI,DASI)
- straightforward analysis RR,RL ? TT,EE,BB,TE
- polarization systematics minimized
- CMB polarization results
- EE power spectrum measured
- consistent with Standard Cosmological Model
- EE acoustic spectrum
- peaks phase one-half cycle offset from TT
- sound crossing angular scale q independently
consistent (3) - BB null, no polarized foregrounds detected
- TE difficult to extract in wide bins
- more data, narrower bins
26CBI Projections
- Run through 2006 EE 2.7 BB 3.5 improvement
27CBI Projections
- EE phase end of 2004 vs. end of 2006
28CBI Projections
- Will BB (lensing) be foreground limited?
29The CBI Collaboration
Caltech Team Tony Readhead (Principal
Investigator), John Cartwright, Clive Dickinson,
Alison Farmer, Russ Keeney, Brian Mason, Steve
Miller, Steve Padin (Project Scientist), Tim
Pearson, Walter Schaal, Martin Shepherd, Jonathan
Sievers, Pat Udomprasert, John Yamasaki. Operation
s in Chile Pablo Altamirano, Ricardo Bustos,
Cristobal Achermann, Tomislav Vucina, Juan Pablo
Jacob, José Cortes, Wilson Araya. Collaborators
Dick Bond (CITA), Leonardo Bronfman (University
of Chile), John Carlstrom (University of
Chicago), Simon Casassus (University of Chile),
Carlo Contaldi (CITA), Nils Halverson (University
of California, Berkeley), Bill Holzapfel
(University of California, Berkeley), Marshall
Joy (NASA's Marshall Space Flight Center), John
Kovac (University of Chicago), Erik Leitch
(University of Chicago), Jorge May (University of
Chile), Steven Myers (National Radio Astronomy
Observatory), Angel Otarola (European Southern
Observatory), Ue-Li Pen (CITA), Dmitry Pogosyan
(University of Alberta), Simon Prunet (Institut
d'Astrophysique de Paris), Clem Pryke (University
of Chicago).
The CBI Project is a collaboration between the
California Institute of Technology, the Canadian
Institute for Theoretical Astrophysics, the
National Radio Astronomy Observatory, the
University of Chicago, and the Universidad de
Chile. The project has been supported by funds
from the National Science Foundation, the
California Institute of Technology, Maxine and
Ronald Linde, Cecil and Sally Drinkward, Barbara
and Stanley Rawn Jr., the Kavli Institute,and the
Canadian Institute for Advanced Research.