Pr - PowerPoint PPT Presentation

About This Presentation
Title:

Pr

Description:

Prsentation PowerPoint – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 71
Provided by: chev3
Category:
Tags: aut | b0 | bk

less

Transcript and Presenter's Notes

Title: Pr


1
MECHANICAL BEHAVIOUR OF DENSE NON-COHESIVE
GRANULAR MATERIALS MACROSCOPIC DESCRIPTION AND
MICROSCOPIC ORIGINS II. FLOW AND JAMMING
François CHEVOIR and Jean-Noël ROUX Université
Paris-EST - INSTITUT NAVIER
GDR CHANT Models and Numerical methods for
Granular Media 20 November 2007
2
Various Situations
Propagation Jamming Mixing ...
3
Simplifications
  • Quasi-monodispersed, spherical grains
  • Dry frictional grains (direct contacts)
  • no interstitial fluid, no cohesion
  • Simple shear geometry

4
Example Flow down an Incline
Start
Propagation
Stop
Hutter et al. 90s
5
Questions
  • Flow regimes
  • liquid or gas ?
  • dependency of flow rate on
  • - inclination, height
  • - roughness of the wall
  • - characteristics of the grains
  • gt Constitutive law ?
  • Flow thresholds
  • gt Fluid - Solid transition

MACROSCOPIC DESCRIPTION AND MICROSCOPIC ORIGINS
6
Plan
1. Macroscopic rheology
2. Constitutive law for granular flows
3. Application to inclined plane flow
4. Generalizations
5. Fluid-Solid transition
7
1. Macroscopic Rheology
Continuous media
g
8
Macroscopic Description
Continuous media
g
Conservation equations
9
Simple shear 2D flow
y
Shear rate
x
10
Simple shear 2D flow
y
g
q
x
11
Mass conservation
Automatically satisfied !
Momentum conservation
y
q
g
P, t
12
Constitutive Law
Shear stress
Shear rate
Newtonian
h
Viscosity h
13
Viscoplastic Behavior Yield stress fluid
(Bingham)
t0
Complex fluids colloïdal or granular
suspensions, foams, emulsions
Coussot
14
Consequences of the yield stress Flow down an
inclined plane
Newtonian
Bingham
y
H
g
q
t(y)
Plug flow
15
2. Constitutive law for granular flows
(Steady flow)
Relations between
Shear stress t
Pressure P
Shear stress
Solid fraction F
16
Quasi-Static Deformation (J-N. Roux course)
t
P
g
17
Constitutive Law
First guess visco-plastic with influence of
the pressure
18
Factors influencing the Viscosity ?
Microstructure gt Solid fraction
Dilute
Dense
Azanza PhD98
19
Solid fraction F
d
s
20
Strong agitation
Binary Collisions gt Velocity fluctuations
 granular temperature
21
Kinetic theory of dense gases
Uncorrelated binary collisions, small dissipation
Jenkins, Savage, Lun, Haff 80s
22
Interpretation
s
23
Dense collisionnal flows
F
Fm
24
Determination of w ?
25
 Heat flux 
From  hot  areas ( agitated strong w) to
 cold  areas ( cool small w)
Analogous to Fouriers law
26
Energy dissipation
restitution coefficient e
27
Determination of w ?
2D steady and uniform flow
28
Determination of w ?
2D steady and uniform flow
29
Homogeneous shear
Energy balance
Work of the stress Dissipation
30
Inhomogeneous shear (vicinity of a wall)
Plane shear without gravity P,t cte
 Hot  wall Dilatation Shear localization
31
Dense Flows
  • Solid fraction close to maximum value
  • Strong geometric constraint
  • Collective motions of grains
  • gt Basic assumptions of kinetic theory not
    relevant

32
Time scales
Inertial time
Shear time
Collision time
da Cruz et al. 03
33
Flow regimes
Dilation
Quasi-Static Slow deformations ?
elasto-plastic solid
Strong agitation Collisionnal ? Dense gas
34
Discrete numerical simulations
  • Contact law
  • elastic stiffness K
  • friction coefficient m
  • viscous dissipation (restitution e)

Sollicitations Velocity or stress
Roux and Chevoir BLPC05
35
Periodic boundary conditions
With wall
P
V
Controlled pressure and shear rate
36
Simulation of dense flows
Measurement of velocity, solid fraction,
stress Average over time and space
da Cruz et al. PRE05
37
Solid fraction Law
QS
Dyn.
38
Friction law
Coll.
QStat
39
Influence of the grain mechanical properties
µ gt 0 Various e
  • 0
  • e 0.9
  • ? e 0.1

40
Friction law in 3D (simple shear)
m 0
m
I
Peyneau 07
41
Comparison (homogeneous shear)
Dilute Flow
Dense Flow
F
m
Fm
mK
mS
I
I
42
3. Application to inclined plane flows
Steady flows
V
?
H
Flow law V(q,H) ?
Experiments and Discrete Simulations
Test of the constitutive law
43
Prediction of the constitutive law (measured in
homogenous shear)
F
m
m(I)
F(I)
q
F(q)
I
I
I(q)
I(q)
44
Steady flows Kinematics
45
Experiment
Extension to large I
m
Pouliquen PF99, JFM05 Azanza PhD98
46
4. Generalization other geometries
Confined
Vertical chute
Annular Shear
g
Plane shear
Free surface
Heap
Rotating drum
Experiments and Discrete simulations
GDR MIDI EPJE04
47
Stress Heterogeneity
gt Shear localization (around 5 grains)
48
Flow down a Heap
Liquid
Solid
Creeping regime exponential localization
Incompatible with m(I)
Komatsu PRL01
49
Influence of lateral walls
Flow rate Q
Thin channels Discrete simulations Taberlet et
al. PRL03
Wide channels (W/d -gt 600) Experiment Jop et al.
JFM05
50
Internal friction m(I) Wall friction mw
Steady flow
Jop et al. JFM05
51
Inclined plane versus heap
(From Pouliquen IHP05)
52
3D flow Tensorial formulation of the friction
law
Jop et al. Nat06
Rough lateral walls
3D velocity profile (num. sim.)
53
Unsteady, non uniform flows Saint-Venant
approach
L gtgt H
L
depth-averaged conservation equations
cf. F. Bouchut
54
Shape of the front
Pouliquen 99
H0
Steady flow
x
55
Spreading of a granular mass down a slope
Comparison Experiment Saint Venant simulation
Pouliquen and Forterre JFM02
56
5. Fluid-Solid Transition
57
Jamming down an inclined plane
m(I)
When q decreases
Progressive slowing
I
58
Consequence on the flow law
Pouliquen PF99
59
Hysteresis
Flow
Stop
Pouliquen 99, Daerr 00
60
Origin of jamming
Mechanism 1 Roughness Mechanism 2
Correlations

61
Roughness Single grain model
Douady et al. 2000
1. GRAVITY COLLISIONS
Abrupt and hysteretic transition
62
Dynamical system
63
Generalization to a layer
64
Generalization to a layer
65
Correlations motion, forces
Correlation length of velocity fluctuations
Measurements Pouliquen, Rognon Lemaître, Model
s Mills, Ertas,
Lc
(mixing length)
66
Initiation of a surface avalanche
q increases
Percolation of sliding contacts areas
Staron and Radjaï PRL02
67
Influence of Micromechanical Parameters
Initial State I k (gt 103) e or z m
Assembling Preparation Yes No Yes Yes
Very small deformation (e ? 10-5) Yes No Yes No Yes
Small deformations (e ? 10-2) Yes No (if I ? 10-3) No No (if I ? 10-3) Yes
Critical state (e ? 1) No No (if I ? 10-4 ?) No No (if I ? 10-4 ?) Yes
Dense flows (10-3 lt I ? 0.1) No Yes No No Yes
Coll. flows (I gt 0.1) No Yes No ? Yes Yes
Roux and Chevoir BLPC05
68
Perspectives
Influence of grain shape cohesion interstitia
l fluid Behavior near an interface Mixing/Segrega
tion Frontier with the quasi-static
regime Complex geometry Large number of grains
69
Reading tips
Proceedings Powders and Grains 2005 Edited by S.
McNamara et al., Balkema. GDR MIDI On dense
granular flows European Journal of Physics E
(2004). Ph. Coussot Rheometry of pastes,
suspensions and granular materials Wiley
(2005). F. Chevoir et al. Ecoulements
granulaires physique et applications, in
Rhéologie des pâtes et des matériaux granulaires,
Coll. Etude et Recherche des Laboratoires des
Ponts et Chaussées (2006). F. da
Cruz Ecoulements de grains secs Frottement et
Blocage PhD ENPC (2004). http//pastel.paristech.o
rg/946/ P. Jop et al. A constitutive law for
dense granular flows Nature (2006).
70
THANK YOU FOR YOUR ATTENTION
Ackowledgments
E. AZANZA, F. BERTRAND, A. CORFDIR, Ph. COUSSOT,
F. DA CRUZ, I. IORDANOFF , J. JENKINS, G. KOVAL,
P. MILLS, J-J. MOREAU, P. MOUCHERONT, M.
NAAIM, O. POULIQUEN, M. PROCHNOW, F. RADJAI, P.
ROGNON, D. WOLF
Write a Comment
User Comments (0)
About PowerShow.com