Title: Does the Hubbard model have the right stuff?
1Insights into d-wave superconductivity from
quantum cluster approaches
André-Marie Tremblay
2CuO2 planes
YBa2Cu3O7-d
3Experimental phase diagram
1.3 1.2 1.1 1.0
0.9 0.8 0.7
n, electron density
Damascelli, Shen, Hussain, RMP 75, 473 (2003)
4The Hubbard model
No mean-field factorization for d-wave
superconductivity
5An effective model
A. Macridin et al., cond-mat/0411092
Damascelli, Shen, Hussain, RMP 75, 473 (2003)
6Weak vs strong coupling, n1
7U of order W at least, consider e and h doped
1.3 1.2 1.1 1.0
0.9 0.8 0.7
n, electron density
Damascelli, Shen, Hussain, RMP 75, 473 (2003)
8Theoretical difficulties
- Low dimension
- (quantum and thermal fluctuations)
- Large residual interactions (develop methods)
- (Potential Kinetic)
- Expansion parameter?
- Particle-wave?
- By now we should be as quantitative as possible!
9Theory without small parameter How should we
proceed?
- Identify important physical principles and laws
to constrain non-perturbative approximation
schemes - From weak coupling (kinetic)
- From strong coupling (potential)
- Benchmark against exact (numerical) results.
- Check that weak and strong coupling approaches
agree at intermediate coupling. - Compare with experiment
10Mounting evidence for d-wave in Hubbard
- Weak coupling (U ltlt W)
- AF spin fluctuations mediated pairing with d-wave
symmetry - (Bourbonnais (86), Scalapino (86), Varma (86),
Bickers et al., PRL 1989 Monthoux et al., PRL
1991 Scalapino, JLTP 1999, Kyung et al. (2003)) - RG ? Groundstate d-wave superconducting
- (Halboth, PRB 2000 Zanchi, PRB 2000, Berker
2005) - Strong coupling (U gtgt W)
- Early mean-field
- (Kotliar, Liu 1988, Inui et al. 1988)
- Finite size simulations of t-J model
- Groundstate superconducting
- (Sorella et al., PRL 2002 Poilblanc, Scalapino,
PRB 2002)
11Numerical methods that show Tc at strong coupling
12Recent DCA results
- Finite-size studies U4t
- Maier et al., PRL 2005
- Structure of pairing Kernel
- Maier et al., PRL 2006
13David Sénéchal
Sarma Kancharla
Bumsoo Kyung
Pierre-Luc Lavertu
Marc-André Marois
14Outside collaborators
Gabi Kotliar
Marcello Civelli
Massimo Capone
15Outline
- Methodology
- T 0 phase diagram
- Cellular Dynamical Mean-Field Theory
- Anomalous superconductivity Non-BCS
- Pseudogap
- A broader perspective on d-wave superconductivity
16Dynamical variational principle
H.F. if approximate F by first order FLEX higher
order
Then W is grand potential Related to dynamics
(cf. Ritz)
Luttinger and Ward 1960, Baym and Kadanoff (1961)
17Another way to look at this (Potthoff)
Still stationary (chain rule)
M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
18A dynamical stationary principleSFT
Self-energy Functional Theory
With FS
Legendre transform of Luttinger-Ward funct.
is stationary with respect to S and equal to
grand potential there.
For given interaction, FS is a universal
functional of S, no explicit dependence on H0(t).
Hence, use solvable cluster H0(t) to find FS.
Vary with respect to parameters of the cluster
(including Weiss fields)
Variation of the self-energy, through parameters
in H0(t)
M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
19Variational cluster perturbation theory and DMFT
as special cases of SFT
M. Potthoff et al. PRL 91, 206402 (2003).
C-DMFT
DCA, Jarrell et al.
V-
Savrasov, Kotliar, PRB (2001)
Georges Kotliar, PRB (1992). M. Jarrell, PRL
(1992). A. Georges, et al. RMP (1996).
20Tests CDMFT
1D Hubbard model Worst case scenario
Excellent agreement with exact results in both
metallic and insulating limitsCapone, Civelli,
SSK, Kotliar, Castellani PRB (2004)Bolech, SSK,
Kotliar PRB (2003)
21Tests Sin-charge separation d 1
U/t 4, 0.2, n 0.89
Kyung, Kotliar, Tremblay, PRB 2006
22Test CDMFT Recover d infinity Mott transition
/(4t)
Parcollet, Biroli, Kotliar, PRL (2004)
23Comparison, TPSC-CDMFT, n1, U4t
TPSC
CDMFT
24Outline
- Methodology
- T 0 phase diagram
- Cellular Dynamical Mean-Field Theory
- Anomalous superconductivity Non-BCS
- Pseudogap
- A broader perspective on d-wave superconductivity
25Outline
- T 0 phase diagram
- Cellular Dynamical Mean-Field Theory
- Anomalous superconductivity Non-BCS
26CDMFT ED
Sarma Kancharla
No Weiss field on the cluster!
Caffarel and Krauth, PRL (1994)
27Effect of proximity to Mott (CDMFT )
t t0
D-wave OP
Kancharla, Civelli, Capone, Kyung, Sénéchal,
Kotliar, A-M.S.T. cond-mat/0508205
Sarma Kancharla
28Gap vs order parameter
t t0
D y Z
Kancharla, Civelli, Capone, Kyung, Sénéchal,
Kotliar, A-M.S.T. cond-mat/0508205
29Competition AFM-dSC using SFT
David Sénéchal
See also, Capone and Kotliar, cond-mat/0603227,
Macridin et al. DCA cond-mat/0411092
30Preliminary
t -0.3 t, t 0.2 t U 8t
1.3 1.2 1.1 1.0
0.9 0.8 0.7
n, electron density
Damascelli, Shen, Hussain, RMP 75, 473 (2003)
31Outline
- Methodology
- T 0 phase diagram
- Cellular Dynamical Mean-Field Theory
- Anomalous superconductivity Non-BCS
- Pseudogap
- A broader perspective on d-wave superconductivity
32Outline
33 Pseudogap (CDMFT)
t -0.3 t, t 0 t U 8t
Kyung, Kancharla, Sénéchal, A.-M.S. T, Civelli,
Kotliar PRB (2006)
Bumsoo Kyung
5
5
See also Sénéchal, AMT, PRL 92, 126401 (2004).
34Other properties of the pseudogap
Bumsoo Kyung
Kyung, Kancharla, Sénéchal, A.-M.S. T, Civelli,
Kotliar PRB in press
Pseudogap size function of doping
See also Sénéchal, AMT, PRL 92, 126401 (2004).
35Outline
- Methodology
- T 0 phase diagram
- Cellular Dynamical Mean-Field Theory
- Anomalous superconductivity Non-BCS
- Pseudogap
- A broader perspective on d-wave superconductivity
36Outline
- A broader perspective on d-wave superconductivity
37One-band Hubbard model for organics
H. Kino H. Fukuyama, J. Phys. Soc. Jpn 65 2158
(1996), R.H. McKenzie, Comments Condens Mat
Phys. 18, 309 (1998)
Y. Shimizu, et al. Phys. Rev. Lett. 91,
107001(2003)
t/t 0.6 - 1.1
38Layered organics (k-BEDT-X family)
( t / t )
n 1
39Experimental phase diagram for Cl
F. Kagawa, K. Miyagawa, K. Kanoda PRB 69
(2004) Nature 436 (2005)
Diagramme de phase (XCuN(CN)2Cl) S. Lefebvre
et al. PRL 85, 5420 (2000), P. Limelette, et al.
PRL 91 (2003)
40Perspective
U/t
d
t/t
41Experimental phase diagram for Cl
F. Kagawa, K. Miyagawa, K. Kanoda PRB 69
(2004) Nature 436 (2005)
Diagramme de phase (XCuN(CN)2Cl) S. Lefebvre
et al. PRL 85, 5420 (2000), P. Limelette, et al.
PRL 91 (2003)
42Mott transition (C-DMFT)
Kyung, A.-M.S.T. (2006)
See also, Sénéchal, Sahebsara, cond-mat/0604057
43Mott transition (C-DMFT)
Kyung, A.-M.S.T. (2006)
See also, Sénéchal, Sahebsara, cond-mat/0604057
44Normal phase theoretical results for BEDT-X
Kyung, A.-M.S.T. (2006)
45Experimental phase diagram for Cl
F. Kagawa, K. Miyagawa, K. Kanoda PRB 69
(2004) Nature 436 (2005)
Diagramme de phase (XCuN(CN)2Cl) S. Lefebvre
et al. PRL 85, 5420 (2000), P. Limelette, et al.
PRL 91 (2003)
46 Theoretical phase diagram BEDT
Kyung
OP
Kyung, A.-M.S.T. cond-mat/0604377
Sénéchal, Sahebsara, cond-mat/0604057
Sahebsara
47AFM and dSC order parameters for various t/t
AF multiplied by 0.1
- Discontinuous jump
- Correlation between maximum order parameter and Tc
Kyung, A.-M.S.T. cond-mat/0604377
48d-wave
Kyung, A.-M.S.T. cond-mat/0604377
Sénéchal, Sahebsara, cond-mat/0604057
49Prediction of a new type of pressure behavior
Sénéchal, Sahebsara, cond-mat/0604057
Kyung, A.-M.S.T. cond-mat/0604377
AF
SL
- All transitions first order, except one with
dashed line
dSC
t/t0.8t
50Références on layered organics
H. Morita et al., J. Phys. Soc. Jpn. 71, 2109
(2002). J. Liu et al., Phys. Rev. Lett. 94,
127003 (2005). S.S. Lee et al., Phys. Rev. Lett.
95, 036403 (2005). B. Powell et al., Phys. Rev.
Lett. 94, 047004 (2005). J.Y. Gan et al., Phys.
Rev. Lett. 94, 067005 (2005). T. Watanabe et al.,
cond-mat/0602098.
51Summary - Conclusion
- Ground state of CuO2 planes (h-, e-doped)
- V-CPT, (C-DMFT) give overall ground state phase
diagram with U at intermediate coupling. - Effect of t.
- Non-BCS feature
- Order parameter decreases towards n 1 but gap
increases. - Max dSC scales like J.
- Emerges from a pseudogaped normal state (Z)
(scales like t).
Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005
Kancharla, Civelli, Capone, Kyung, Sénéchal,
Kotliar, A-M.S.T. cond-mat/0508205
52Conclusion
- Normal state (pseudogap in ARPES)
- Strong and weak coupling mechanism for pseudogap.
- CPT, TPSC, slave bosons suggests U 6t near
optimal doping for e-doped with slight variations
of U with doping.
U5.75
U6.25
U5.75
U6.25
53Conclusion
- The Physics of High-temperature superconductors
d-wave) is in the Hubbard model (with a very high
probability). - We are beginning to know how to squeeze it out of
the model! - Insight from other compounds
- Numerical solutions DCA (Jarrell, Maier)
Variational QMC (Paramekanti, Randeria, Trivedi). - Role of mean-field theories (if possible)
Physics - Lot more work to do.
54Conclusion, open problems
- Methodology
- Response functions
- Tc (DCA TPSC)
- Variational principle
- First principles
-
- Questions
- Why not 3d?
- Best mean-field approach.
- Manifestations of mechanism
- Frustration vs nesting
55David Sénéchal
Sarma Kancharla
Bumsoo Kyung
Pierre-Luc Lavertu
Marc-André Marois
56Outside collaborators
Gabi Kotliar
Marcello Civelli
Massimo Capone
57Mammouth, série
58André-Marie Tremblay
Sponsors
59Recent review articles
- A.-M.S. Tremblay, B. Kyung et D. Sénéchal, Low
Temperature Physics (Fizika Nizkikh Temperatur),
32,561 (2006). - T. Maier, M. Jarrell, T. Pruschke, and M. H.
Hettler, Rev. Mod. Phys. 77, 1027 (2005) - G. Kotliar, S. Y. Savrasov, K. Haule, V. S.
Oudovenko, O. Parcollet, and C.A. Marianetti,
cond-mat/0511085 v1 3 Nov 2005
60Cest fini Merci
Cest fini enfin
61MDC in CDMFT
t -0.3 t, t 0 t U 8t
7
7
4
Kancharla, Civelli, Capone, Kyung, Sénéchal,
Kotliar, A-M.S.T. cond-mat/0508205
62AF and dSC order parameters, U 8t, for various
sizes
t -0.3 t t 0.2t U 8t
dSC
Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005
Aichhorn, Arrigoni, Potthoff, Hanke,
cond-mat/0511460
63Hole-doped (17)
- t -0.3t
- t 0.2t
- 0.12t
- 0.4t
Sénéchal, AMT, PRL 92, 126401 (2004).
64Hole-doped 17, U8t
65Electron-doped (17)
- t -0.3t
- t 0.2t
- 0.12t
- 0.4t
Sénéchal, AMT, PRL in press
66Electron-doped, 17, U8t