Deux exemples en pharmacocintique de population - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Deux exemples en pharmacocintique de population

Description:

Dpt d'Epid miologie, Biostatistique et Recherche Clinique. CHU Bichat-Claude Bernard ... Introduction la cin tique de population. PK de population de ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 32
Provided by: San119
Category:

less

Transcript and Presenter's Notes

Title: Deux exemples en pharmacocintique de population


1
Deux exemples en pharmacocinétique de population
  • France MENTRE, Sylvie RETOUT et Xavière PANHARD
  • INSERM E03 57
  • Dpt dEpidémiologie, Biostatistique et Recherche
    Clinique
  • CHU Bichat-Claude Bernard
  • (Université Paris 7)

2
PLAN
  • Introduction à la cinétique de population
  • PK de population de lenoxaparine
  • données dun essai de phase III (Aventis)
  • NONMEM
  • Covariables
  • SE, CI et bootstrap
  • empirical Bayes estimates (PD)
  • design
  • PK de population du nelfinavir et de M8
  • données post AMM (ANRS)
  • deux variables
  • nlme
  • construction du modèle
  • covariables
  • validation

3
(No Transcript)
4
(No Transcript)
5
2. POPULATION PHARMACOKINETICS OF ENOXAPARINE

Br J Clin Pharmacol, 2003 56, 407-414
6

7
PK enoxaparin
  • Enoxaparin (Adventis)
  • low-molecular weight heparin
  • new development for patients suffering of
    myocardial infarction
  • Enoxaparin administration
  • 30 mg by IV bolus at t 0
  • 1 mg/kg/12h by subcutaneous injection
  • Empirical design for phase III population PK
    study

8
Empirical design
-
9
Empirical design
  • 200 patients 2 samples at D1 replicated at D3
    (5 designs)
  • 20 patients 4 samples at D3

10
Design execution
  • Sampling time distribution (D1 D3)

Theoritical (empirical design)
Observed
11
Data from D1 and D3

12
Data file in NONMEM
13
Pharmacokinetic Model
ka
Volume V
k
  • one cp model, first order absorption and
    elimination
  • PK parameters ka, CL k.V, V

14
Basic mixed-effects model
  • Individual model
  • yi f(?i, ?i) ei
  • ?i individual parameters (size p)
  • e gaussian zero mean random error
  • var (e) ( sinter sslopef(q, x) )2
  • constant CV sinter 0
  • Random-effects model
  • ?i µ exp bi
  • bi N (0, ?)
  • ? diagonal wk Var(bik)
  • Population parameters y  (size P)
  • µ (fixed effects)
  • unknowns in ? (variance of random effects)
  • sinter and/or sslope (error variance)

15
Basic Model
16






MINIMUM VALUE OF OBJECTIVE FUNCTION





   
10962.077







FINAL PARAMETER ESTIMATE





  THETA - VECTOR OF FIXED
EFFECTS PARAMETERS     TH
1 TH 2 TH 3 7.52E-01
3.55E00 1.44E-01   OMEGA - COV MATRIX FOR
RANDOM EFFECTS - ETAS  
ETA1 ETA2 ETA1 1.34E-01
ETA2 0.00E00 5.69E-02     SIGMA - COV
MATRIX FOR RANDOM EFFECTS - EPSILONS  
EPS1 EPS1 7.96E-02
17

STANDARD ERROR OF ESTIMATE





   
THETA - VECTOR OF FIXED EFFECTS PARAMETERS
    TH 1 TH 2 TH
3 2.13E-02 2.05E-01 1.41E-02    
OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS
    ETA1 ETA2 ETA1
2.23E-02 ETA2 .........
2.68E-02     SIGMA - COV MATRIX FOR RANDOM
EFFECTS - EPSILONS     EPS1
EPS1 8.23E-03 1
18
Standard goodness of fit plots
19
Covariates
20
Covariates model building
21
Results of Covariates model building
22
Final Model
  • Inter-occasion variability
  • patients sampled more than once
  • K occasions (k1,K)
  • additional random effects k
  • ex CLik bCL exp(bi kik)
  • Fixed effects for covariates
  • two additional fixed effects for covariates
  • bCLCR creatinine clearance
  • bWT weight
  • Clik (CL bWT (WTi-82) bCLCR (CLCRi- 87.91))
    exp (bikik)

23
(No Transcript)
24
Estimated parameters
25
 Bootstrap  procedure
26
Effect of PK on haemorrhage (1)
  • Two PD variables (yes/no)
  • Major haemorrhage
  • All haemorrhage
  • Predictive factors of haemorrhage risk
  • Logistic regression (stepwise selection in SAS)
  • Individual covariates
  • sex, weight, age, CRCL, platelet count,
    haematocrit, haemoglobin, dose
  • AUC measure of exposure
  • Estimation of individual AUC
  • Empirical Bayes estimates of CL
  • Final population model
  • Individual covaiates and concentrations
  • AUC Dose/ CL

27
Effect of PK on haemorrhage (2)
28
Optimal design for the basic model (1)
  • Constraints for design optimisation using PFIM
  • 4 samples per patient
  • two at D1 (first dose) two at D3 (fifth dose)
  • 10 available sampling times
  • 0.5, 1, 1.5, 2, 2.5, 4, 6, 8, 10, 12
  • Simulation (with NONMEM) of 30 sets for two
    designs
  • empirical design
  • optimal design
  • Analysis
  • estimation with NONMEM
  • comparison of errors between designs
  • comparison of standard errors provided by NONMEM
    and by PFIM1.1

29
Optimal design for the basic model (2)
-
Efficiency 1.35
30
Optimal design for the basic model (3)
Relative errors from the 30 simulated data sets
20
15
RMSE ()
10
5
0
CL
V
KA
OMCL
OMV
SIGMA2
31
Optimal design for the basic model (4)
Evaluation of predicted estimation CV on 30
simulations
empirical CV CV predicted by PFIM
histogram NONMEM CV
Write a Comment
User Comments (0)
About PowerShow.com