Title: Deux exemples en pharmacocintique de population
1Deux exemples en pharmacocinétique de population
- France MENTRE, Sylvie RETOUT et Xavière PANHARD
- INSERM E03 57
- Dpt dEpidémiologie, Biostatistique et Recherche
Clinique - CHU Bichat-Claude Bernard
- (Université Paris 7)
2PLAN
- Introduction à la cinétique de population
- PK de population de lenoxaparine
- données dun essai de phase III (Aventis)
- NONMEM
- Covariables
- SE, CI et bootstrap
- empirical Bayes estimates (PD)
- design
- PK de population du nelfinavir et de M8
- données post AMM (ANRS)
- deux variables
- nlme
- construction du modèle
- covariables
- validation
3(No Transcript)
4(No Transcript)
52. POPULATION PHARMACOKINETICS OF ENOXAPARINE
Br J Clin Pharmacol, 2003 56, 407-414
6 7PK enoxaparin
- Enoxaparin (Adventis)
- low-molecular weight heparin
- new development for patients suffering of
myocardial infarction - Enoxaparin administration
- 30 mg by IV bolus at t 0
- 1 mg/kg/12h by subcutaneous injection
- Empirical design for phase III population PK
study
8Empirical design
-
9Empirical design
- 200 patients 2 samples at D1 replicated at D3
(5 designs) - 20 patients 4 samples at D3
10Design execution
- Sampling time distribution (D1 D3)
Theoritical (empirical design)
Observed
11Data from D1 and D3
12Data file in NONMEM
13Pharmacokinetic Model
ka
Volume V
k
- one cp model, first order absorption and
elimination - PK parameters ka, CL k.V, V
14 Basic mixed-effects model
- Individual model
- yi f(?i, ?i) ei
- ?i individual parameters (size p)
- e gaussian zero mean random error
- var (e) ( sinter sslopef(q, x) )2
- constant CV sinter 0
- Random-effects model
- ?i µ exp bi
- bi N (0, ?)
- ? diagonal wk Var(bik)
- Population parameters y (size P)
- µ (fixed effects)
- unknowns in ? (variance of random effects)
- sinter and/or sslope (error variance)
15Basic Model
16 MINIMUM VALUE OF OBJECTIVE FUNCTION
10962.077
FINAL PARAMETER ESTIMATE
THETA - VECTOR OF FIXED
EFFECTS PARAMETERS TH
1 TH 2 TH 3 7.52E-01
3.55E00 1.44E-01 OMEGA - COV MATRIX FOR
RANDOM EFFECTS - ETAS
ETA1 ETA2 ETA1 1.34E-01
ETA2 0.00E00 5.69E-02 SIGMA - COV
MATRIX FOR RANDOM EFFECTS - EPSILONS
EPS1 EPS1 7.96E-02
17 STANDARD ERROR OF ESTIMATE
THETA - VECTOR OF FIXED EFFECTS PARAMETERS
TH 1 TH 2 TH
3 2.13E-02 2.05E-01 1.41E-02
OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS
ETA1 ETA2 ETA1
2.23E-02 ETA2 .........
2.68E-02 SIGMA - COV MATRIX FOR RANDOM
EFFECTS - EPSILONS EPS1
EPS1 8.23E-03 1
18Standard goodness of fit plots
19Covariates
20Covariates model building
21Results of Covariates model building
22Final Model
- Inter-occasion variability
- patients sampled more than once
- K occasions (k1,K)
- additional random effects k
- ex CLik bCL exp(bi kik)
- Fixed effects for covariates
- two additional fixed effects for covariates
- bCLCR creatinine clearance
- bWT weight
- Clik (CL bWT (WTi-82) bCLCR (CLCRi- 87.91))
exp (bikik)
23(No Transcript)
24Estimated parameters
25 Bootstrap procedure
26Effect of PK on haemorrhage (1)
- Two PD variables (yes/no)
- Major haemorrhage
- All haemorrhage
- Predictive factors of haemorrhage risk
- Logistic regression (stepwise selection in SAS)
- Individual covariates
- sex, weight, age, CRCL, platelet count,
haematocrit, haemoglobin, dose - AUC measure of exposure
- Estimation of individual AUC
- Empirical Bayes estimates of CL
- Final population model
- Individual covaiates and concentrations
- AUC Dose/ CL
27Effect of PK on haemorrhage (2)
28Optimal design for the basic model (1)
- Constraints for design optimisation using PFIM
- 4 samples per patient
- two at D1 (first dose) two at D3 (fifth dose)
- 10 available sampling times
- 0.5, 1, 1.5, 2, 2.5, 4, 6, 8, 10, 12
- Simulation (with NONMEM) of 30 sets for two
designs - empirical design
- optimal design
- Analysis
- estimation with NONMEM
- comparison of errors between designs
- comparison of standard errors provided by NONMEM
and by PFIM1.1
29 Optimal design for the basic model (2)
-
Efficiency 1.35
30 Optimal design for the basic model (3)
Relative errors from the 30 simulated data sets
20
15
RMSE ()
10
5
0
CL
V
KA
OMCL
OMV
SIGMA2
31Optimal design for the basic model (4)
Evaluation of predicted estimation CV on 30
simulations
empirical CV CV predicted by PFIM
histogram NONMEM CV