Strike a Pose Image-Based Pose Synthesis - PowerPoint PPT Presentation

About This Presentation
Title:

Strike a Pose Image-Based Pose Synthesis

Description:

Cedric Vanaken, Chris Hermans, Tom Mertens, Fabian Di Fiore, Philippe ... Starpulse Supermodels image gallery. http://www.starpulse.com/supermodels/ Overview ... – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 23
Provided by: cedricv
Category:

less

Transcript and Presenter's Notes

Title: Strike a Pose Image-Based Pose Synthesis


1
Strike a PoseImage-Based Pose Synthesis
  • Cedric Vanaken, Chris Hermans, Tom Mertens,
  • Fabian Di Fiore, Philippe Bekaert, Frank Van
    Reeth
  • Hasselt University - Belgium

2
Image-Based Pose Synthesis
  • Create novel poses from input images

3
Related Work
  • As-Rigid-As-Possible Shape Manipulation Igarashi
    et al.
  • Character Animation from 2D Pictures and 3D
    Motion Data Hornung et al.
  • Video-Based Character Animation Starck et al.

Igarashi et al.
Starck et al.
Hornung et al.
4
Related Work
  • ?? standard image-based deformation
  • Multiple input images (2 - 4)
  • Straightforward user-interaction
  • Assign approximate skeleton
  • Higher realism in local regions
  • e.g. creases in fabrics
  • Large variety of target poses
  • If similar pose available in input

5
Algorithm Overview
Skeleton Matching
- Segmentation
?
Target Skeleton
6
Algorithm Overview
- Segmentation
Skeleton Matching
- Bodypart selection
- Bodypart fusing
?
Target Skeleton
7
2D Skeleton Matching
  • Articulated Video Sprites Vanaken et al, 2006
  • (Absolute) positions of skeleton joints
  • Angles
  • ? 2D posture
  • Limb Length Ratios
  • ? Implicit 3D information

8
Segmentation
  • Background images available
  • Background subtraction
  • Manual segmentation
  • Semi-automatic
  • Grabcut Rother et. al

9
Body Part Selection
  • Divide body
  • Arms
  • Legs
  • Torso
  • Head
  • For each body part
  • 2D skeleton matching
  • Keep best match
  • If no unique best match
  • Keep all good options
  • Combine in later stage

10
Mesh Creation
  • Link skeleton with pixels
  • Outer vertices ? silhouette
  • Inner vertices
  • Skeleton edge image
  • Mesh deformation
  • ? Larger variety for target poses

11
Pixel selection
  • Link body parts with triangles
  • Every triangle
  • confidently belongs to body part if
  • Vertex on skeleton bone
  • 2 closest skeleton bones belong to same body part
  • Otherwise uncertain
  • For each matching body part
  • Save confident triangles to result
  • Fuse with uncertain triangles

12
Fusing Body parts
  • What we have until now
  • Fuse this into a nice result

13
Fusing Body parts
  • Subdivide final image
  • Lattice of square patches
  • For each patch
  • Find input patches matching confident regions
  • Labeling problem
  • For each patch, n input patches available (n
    overlapping uncertain regions)

14
Fusing Body parts
  • Cost function
  • Data term
  • Patch overlap with confident regions
  • Smoothness term
  • Patch overlap with adjacent patches
  • SSD
  • Minimize function ? Belief Propagation

15
Results
Average of input 1 input 2
Input 1
Input 2
Result
16
Results
Our method 2 input images
Standard deformation 1 input image
17
Results
18
Results
19
Results
Starpulse Supermodels image gallery. http//www.st
arpulse.com/supermodels/
20
Overview
  • Pose synthesis from set of photographs
  • Merging body parts into desired pose
  • User input 2D skeletons

21
Future Work
  • Automatic skeleton extraction
  • Combine with animation/retargeting
  • Occluding body parts
  • Sideways capture
  • 3D skeletons / multi-camera
  • Color correction

22
Questions?
Write a Comment
User Comments (0)
About PowerShow.com